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Part 1. Methodology

1.1. Introduction

The development of methods to analyze faults in analog circuits originally evulved to provide a

means of rapidly identifying component failures and assembly error in circuit boards. Unlike fault

analysis for digital circuits, analog fault analysis has been comparatively slow to evolve, with only

a few practical implementations. Several factors have contributed to making analog circuit fault

analysis more of a technical challenge than the digital counterpart:

" Analog circuits have a continuum of possible failure conditions. In contrast, digital circuit

failure is dominated by "stuck at" and other "hard" fault conditions that can be analyzed

using well-developed systematic procedures;

" A "good" component may be within a prescribed manufacturing tolerance, but not at the

exact nominal value of the circuit design;

* Complex feedback and nonlinear circuit operation, which are influenced by faults in a non-

linear manner,

* Circuit simulation is slow and subject to numerical difficulties (e.g., convergence, model-

ing error)

* The exact nature of the fault may not be known; hence, difficult to model;

" A fault in one component can cause faults in other components.

Analog fault analysis covers the procedures of circuit measurement, fault detection, and fault clas-

sification. The disciplines of test generation and circuit simulation are also tightly coupled to fault

analysis problems. Furthermore, and especially for integrated circuits (ICs), issues on yield pre-

diction and device modeling influence the performance of any fault analysis scheme.

During the 1960s, analog fault diagnosis methods evolved as the result of U.S. Dept. of Defense

interest in providing rapid field servicing of circuit boards in weapons, navigation, and communi-

cation systems. A number of studies followed, culminating in a large number of theoretical treat-

ments on analog circuit fault analysis during the late 1970s and early 1980s. A comprehensive re-

view on the topic has been given in the Interim Report [19], as well as in other references [5,11,15].
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Analog fault detection and classification generally can be divided into two major categories of

methodology: simulation-before-test and simulation-after-test. Broadly speaking, the former cov-

ers "fault dictionary" and other pattern matching approaches, while the latter covers the "parameter

estimation" and related methods. Simulation-after-test effectively "reverse engineers" a circuit to

determine the values of the cir- ,it component parameters. This is performed by taking a series of

voltage and/or current measurements of the circuit, then applying numerical analyses to arrive at

the component values. The method assumes knowledge of the circuit's topology, and that all com-

ponent models are sufficiently accurate. Details of simulation-after-test methods can be found

elsewhere [5,11,15,19]. Unfortunately, simulation-after-test has severe drawbacks that make such

methods impractical for fault analysis in ICs. These drawbacks include:

1) Catastrophic faults cannot be readily simulated without substantially increasing the com-

plexity of the numerical analyses;

2) The component models might not readily account for the true fault mechanisms;

3) The techniques often require large amounts of computation and complicated algebraic re-

lations describing faults in even simple circuits;

4) Many of the techniques fail when nominal component variation is accounted for.

5) Some methods require measurements that may not be practical with ICs (e.g., internal cir-

cuit probing and short-circuiting circuit ports to determine currents).

In view of the potential complications encountered with simulation-after-test methods, our ap-

proach has been oriented toward the simulation-before-test approach. This approach first deter-

mines the circuit responses that are likely to occur, given a priori the anticipated types of IC faults

to be encountered during IC production or when the ICs are in field use. These responses, usually

nodal voltages, can be simulated or measured. The response data are stored in computer files and

make up what is commonly known as afault dictionary or training set. Next, measurements of ICs

under test are made. The measurement data are then compared against the collection of circuit re-

sponses from the fault dictionary. A set of responses that best match a given set of measurement

data determines the type of fault detected, if present, in the IC. For the purposes of our study, all
"measurement" data have been obtained by simulations.

Our study has investigated two approaches to simulation-before-test fault analysis: 1)fault detec-

tion and classification, and 2) Go/No-Go testing. Both approaches are based on similar assump-

tions and computations. For simplicity, only catastrophic faults are considered in the bulk of this

study.
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1.2. Fault Detection and Classification

This study's approach to fault detection and classification relies on multivariate discrimination

analysis. We will now review discrimination analysis in the context of how it was used to detect

and classify simulated faults in analog and mixed-mode ICs, Simple hypothetical circuits will be

used in this discussion. Simulations of real circuits will be discussed in detail in Part 2 of this re-

port.

1.2A. Univariate Case

Univariate voltage distribution

An understanding of the multivariate statistics used in this study is best grasped by first understand-

ing the univariate case. The word univariate implies that only one measurement variable is con-

sidered. Figure 1-1 shows a hypothetical circuit in which v, (the voltage drop across resistor RB)

is the variable measured. We now assume that resistors RA and RB are not fixed, but random. That

is, the resistor parameters take on statistical distributions to account for variations in manufacturing

processes and changes in environmental conditions that affect the resistance values. For the pur-

poses of this study, we will assume that the resistors have normal distributions with prescribed

means and standard deviations. (The assumption of normality can be relaxed when nonparametric

methods are used, to be discussed later in this report).

Given the inherent variability of the resistors, we must perform a Monte Carlo simulation of the

circuit to observe the variability in the measured variable v1. The Monte Carlo simulations carry

out a series of N simulations on the circuit, where each simulation randomly selects values of RA

and RB from the resistance distributions. v1 then takes on a normal distribution with a mean volt-

age Vml and standard deviation a1 . The distribution is described by the relation:

l(VI -V ml)2l

f2 1 a ](1-1)
f (va) 

I M2 delo
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where the standard deviation a is estimated as:

Variance = 2  (1-2)1N

v1 is shown in Figure 1-2. Note that if the circuit were nonlinear (e.g., the resistances were voltage-

dependent), the distribution for v1 would not necessarily be of a normal form. However, as we will

see in the examples of Part 2, the assumption of normality remains a reasonable approximation

even with highly nonlinear circuits. Normality is assumed in such cases to simplify the discrimi-

nation mathematics.

Presence offaults

Now consider the effect of introducing a fault to the circuit of Figure 1-1. Catastrophic faults in

the resistors can be represented by drastic changes in the resistance values where a very low resis-

tance value (relative to nominal) can represent a sl.ort circuit, and a very high resistance value can

represent an open circuit. Effects on the distribution of v1 are shown in Figure 1-3 as the circuit

undergoes catastrophic faulting. Certain fault types cannot be distinguished given only the v1 data.

These fault types constitute ambiguity sets. Ambiguity sets can be avoided by a sufficient number

of different types of measurements. In the present example, measurement of current through the

resistors would help to distinguish the overlapping faults.

RA V1

Vin RB

Figure 1-1. Simple circuit illustrating a univariate circuit response. Resistors RA and
RB, which can b-. nonlinear, are nondeterministic with normal distributions.
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P(V)

V1

Vi" 01 Vml V1 +CY1

Figure 1-2. Normal distribution of circuit voltages from the hypothetical circuit in Figure 1-1.
p(vl) is the probability density function.

RA and RB with nominal variation

RA open or RB short RA short or R13 open

V1

Vl 01 Vml vI + 0 1  Vn

Figure 1-3. Distributions of circuit performance arising from faulting resistors in Figure 1-1.
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Fault classification

To make the sets of distributions better resemble the types of distributions encountered in more

complicated circuits, let us now assume that when a univariate circuit of many possible fault types

is faulted, a scalar quantity such as v1 continues to take on normal distributions with shifted means

and standard deviations (Figure 1-4). To determine the type of fault present in a given sample cir-

cuit, we measure its vl. We then compute the normalized distance of the measured v1 to each of

the distributions according to the relation:

VlVmi2 _ (2-1
V - VMliJ = (v 1  Vml i  (v 1 - vmli) (1-3)

Gli I Mid Ol V -Vl

Here the subscript i refers to the fault type that the measured v1 is compared to. The fault type cor-

responding to the smallest normalized distance value is the most likely fault present in the circuit.

Note that if the circuit has no faults (i.e., it is nominal), the distribution of v1 corresponding to the

nominal circuit would have the closest distance measure to the v1 from the sample circuit. In other

words, "good" circuits are classified in a manner identical to the classification of faulted circuits.

An important problem arises when a fault that is introduced to a sample circuit is not accounted for

in the training set. In this case, the closest fault type would be selected as the fault present, which

would likely be incorrect. One way in which unaccounted faults can be identified as such is simply

to assign a threshold to the distance measure of eq. 1-3. Any distance measures exceeding the

threshold would then correspond to faults that cannot be identified; meanwhile, the sample circuit

would at least be flagged as being faulted.

p(v 1) fault type 1 nominal fault type 3

Figure 1-4. Univariate distributions for several fault types affecting a single voltage point v 1.
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1.2B. Multivariate Case

Multivariate statistics are applied when more than one voltage is measured. Therefore, we have to

account for the distributions of more than one measurement variable. Figure 1-5 depicts a circuit

suitable for a fault analysis of its resistances using multivariate discrimination analysis. In this case,

voltages v1, v2, and v3 are measured. Faults can occur by shifting the resistance values, which

would result in various combinations of shifts in the distributions (means and standard deviations)

of the measured voltages. The distributions of each fault type is given as follows (where the subscript

i represents the ith fault type):

1
- ((V- gi) rZ-1 (V-

f1 (V) P • e (1-4)

lij 2 (21 2D

Here V represents a vector of measured voltages. In the present example, vector V is made up of the

voltage components vl, v2 , and v3. i is a vector containing the average voltage components over N

Monte Carlo runs; p is the size of the vector V (in this case 3). The symbol Ei is the covariance matrix

corresponding to the ith fault type. Yi is estimated as:

E (v 1 - Vml ) 2 E (v 1I - Vml1) (v 2 - Vm2 ) E (v 1 - Vml1) (v 3 - Vm3 )

E(v 2 -v m 2 ) (VI - Vm l ) E(v 2 - v m 2 )
2  E(v 2 - Vm 2 ) (v 3 - Vm 3 ) (1-5)

E(v3-Vm3) (Vl-Vml) E(V3 -Vm 3) (V2 -Vm 2 ) E(v3-Vm3 ) 2

with the terms vmi the mean value of the ith nodal voltage. The term E(x) represents the expected

value of x, given by:

n1 n

E (x) = N x (1-6)

where the summation is over the N Monte Carlo iterations.
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RA V1  RC v2  RE V3

+ RB RD RF

Figure 1-5. Hypothetical circuit yielding multivariate statistics. The voltages vl , v2 , and v3 are
the components to the multivariate vector V which undergoes analysis. Components RA, RB, RC,
RD, RE, and R. can be nonlinear resistors.

A correspondence between the univariate and multivariate cases should now become apparent.

The covariance matrix is the multivariate counterpart to the univariate standard variance (compare

eqs. 1-2 and 1-5). Likewise, individual voltages are now grouped into vectors.

Note the number of components in V can be augmented through means other than by simply looK-

ing at more nodal voltages. Additional measurements, such as AC magnitude and phase, frequency

swept nodal voltages, or nodal voltages as a function of input voltage all contribute additional com-

ponents to V. Each AC phasor measurement contributes two components (real and imaginary

parts, or magnitude and phase). Thus, even the circuit in Figure 1-1 can be treated as a multivariate

case when, for example, the input voltage source is swept over voltage and/or frequency. As will

be seen in the examples, additional measurements can enhance the discrimination power of the

classification. However, too many measurements can unnecessarily reduce computational effi-

ciency and ultimately affect discrimination accuracy.

Quadratic Discrimination Score (or Quadratic Distance Measure)

Multivariate discrimination requires the computation of a quantity analogous to the univariate nor-

malized distance (eq. 1-3). This quantity, called the quadratic discrimination score, is computed

by first taking the natural logarithm of both sides of eq. 1-4:

Part 1. Methodology 8



l fk(V)) R n(2 -) () (1-7)

where k = 1,2,3,...g (for g fault classes), and p is the degree of freedom for the distribution, which

is equivalent to the number of voltage components in the vector V. Given a voltage vector V from

the test circuit, the fault distribution that V most likely belongs to corresponds to that distribution

which maximizes the quantity ln[fk(V)]. Eq. 1-7 is evaluated for each of the 1th fault classes. Since

we are comparing different values of number evaluated in eq. 1-7, we can eliminate the constant

term (p/2)ln(27t). With a sign change, we then have:

d (V) k = lndk + ((V - k TZkl (V- k (k = 1,2,3,...g) (1-8)

dk(V) is the quadratic discrimination score. The th of g fault types resulting in a minimum score

identifies the type of fault detected in the test circuit. Note the resemblance of dk(V) with the nor-

malized distance value for the univaiate case (eq. 1-3).

This analysis assumes that the prior probabilities of all fault types are equal. In other words, all

fault types considered during the generation of the training set are assumed to be equally likely to

occur. This assumption will lead to a conservative outcome in determining whether or not a circuit

is faulted. However, the assumption can also lead to misclassification among faults, especially

when a commonly occurring fault must be classified. To account for the relative frequency of faults,

modify equation (1-8) by:

d (V) k = ln)~k + ((V- t , (V- + In (Pk) (k = 1,2,3,...g) (1-9)

wherePk is the prior probability of the kth fault type. The prior probabilities among all the fault types

must sum to unity. Note that this analysis also assumes that all misclassification costs are equal (see

ref. 16 for more details).

Although eq. 1-8 appears relatively easy to evaluate, care must be taken in computing the term 1-1.

Often Y is singular because of the presence of identical voltage components obtained during the

training process. In other words, tests or simulations that generate linearly dependent voltage com-

ponents will lead to a singular covariance matrix. To avoid this situation, voltages must be carefully

chosen such that they are linearly independent. Programs such as SAS also test I for singularities,
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and remove linearly dependent rows and columns. In certain situations, many rows and columns

(hence, voltage vector components) have to removed from the covariance matrices of most of the

fault classes. In such cases, the pooled covariance matrix can be used. This matrix is a weighted

average of the individual fault type covariance matrices:

I(N - 1) 1 1 + (N 2 - 1) g2 + ... + (Ng - 1) 1 g (1-10)
pooled N 1 +N 2 + ... +N g

where Nk is the number of Monte Carlo samples for each kth of g fault classes. When the pooled

covariance is used, the user risks a potential degradation in discrimination power. In SAS, the use

of the pooled covariance matrix is selected by the user. In the demonstration program of this study,

a fault type will use the pooled covariance matrix when for the kth fault type, ln/] < -224 (i.e.,

when the kth fault's covariance matrix determinant becomes extremely small).

Discrimination Testing

The power of a discriminator is simply a measure of how often the discrimiuator calculation (eq. 1-

8) correctly and incorrectly classifies a test point. In the present study, testing is performed by sub-

mitting a series of test points having known fault types to the discriminator. A summary is then

tallied describing how many faults are correctly and incorrectly classified, and under what fault

classes misclassified faults are assigned. This summary can be presented in the form of a confusion

table, shown in Figure 1-6 for a discrimination analysis in which three fault types are considered.

With N1, N2, and N3 the number of tests for each fault type, and the subscripts m and c meaning

misclassified and correctly classified, respectively, we define the apparent error rate of misclassi-

fication (APER) as ref. 16; pp. 496-497]:

APER NM + N2m +... + Ng m
N + N 2 +... + Ng (1-)

Discrimination analysis summaries are provided by SAS and the demonstration program (examples

are given in Part 2).
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Predicted Membership

class 1 class 2 class 3

class i Nic N12m N13m

Actual Membership class 2 N2lm N23m

class 3 N31m N32m N3c

Figure 1-6. Confusion table for three classes. The symbol Niym is the number of actual elements
in the ith class misclassified as belonging to the /h class; Nic is the number of elements in the ith

class correctly classified as belonging to that class. The total misclassification count for the ith

class, Nim, is given as: Ni, = F
j,j 9,i

1.2C. Overall Procedure

We now summarize the overall procedure used in this study to evaluate the use of discrimination

analysis in classifying faults in analog circuits.

Step 1: Assign normal distributions to all circuit components that affect the measured per-

formance of a given circuit

Step 2: Perform a series of Monte Carlo simulations of the circuit operating under nominal

and faulted conditions. For simplicity, consider only one catastropbic fault at a

time. Store selected node voltages from each simulation run in a file. When this

step is completed, the training set has been generated.

Step 3: Perform a new series of Monte Carlo simulations on the same circuit, again under

nominal and faulted conditions. For each simulation run, evaluate the quadratic dis-

crimination score and assign the circuit fault to the appropriate fault class. Tally

how often a given fault is correctly classified. Also keep track of what fault classes

a given fault is incorrectly classified under.
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One means of saving time and computer disk space is to simply use the training set data as the test
data of Step 3. This "trick" eliminates the need to perform a new series of Monte Carlo simula-
tions. The drawback is that when test and training set data are the same, the APER becomes un-

derestimated. However, this problem becomes insignificant for sample sizes over 50 for each fault

type, as will be seen in Part 2.

The above steps are carried out by the Statistical Faul' Analyzer (SFA) program written for this

study, in conjunction with the commercial statistical package SAS (and many other commercial

packages). Details of the SFA program will be given in Section 1-4.

1.3. Go/No-Go Testing

Our approach to Go/No-Go testing makes use of hypothesis testing. This procedure is much sim-

pier than the discrimination analysis because Monte Carlo simulations of only the nominal circuit
are used to construct a training set. The ttaining set is used to define the multidimensional proba-
bility density distribution (eq. 1-4) of the nominal circuit voltages. During hypothesis testing, we

assess the likelihood that a voltage test vector V falls within the distribution.

Assuming that V takes on a multivariate normal distribution (which is usually reasonable for the
purposes of our study), it can be shown that the solid ellipsoid of V vectors satisfying the relation

[ref., 16, p. 126]:

(V- g onominal) T, (V - [.nominal ) (1-12)

has probability 1 - a. Here X 2(a) is the 100o th percentile of a chi-square distribution with p de-

gre-.s of freedom (in effect, p is the number of voltage components in V); Ptnominal is the vector con-

taining the average of the voltage components obtained from measurements or simulations of the

nominal circuit, and 1nominal is the nominal circuit's covariance matrix.

A hypothesis test is performed by evaluating eq. 1-12 for a given test circuit's V. When tne result

is less than X2, the test circuit's performance has a 100(l-oc)% chance of being nominal. If eq. 1-

12 results in a value greater than Xp2 , the circuit performance does not resemble that of a nominal

circuit; hence, the circuit fails the Go/No-Go test. In terms of traditional hypothesis testing, we
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define the null hypothesis as "the circuit is nominal" (i.e., good). The null hypothesis is rejected

when eq. 1-12 results in a value greater than Xp2; in this case the circuit fails. Note that the prob-

ability of falsely rejecting the null hypothesis is 100a%, which corresponds to a Type I error. For

this study, (x has been set to 0.05.

As in the discrimination analysis, care must be taken when evaluating eq. 1-12 due to the possibil-

ity that I is a singular matrix. If Y is singular, rows and columns must be deleted that correspond

to linearly dependent voltage components.

We note that an "i, iofficial" method for performing hypothesis testing makes use of the discrimi-

nation analysis. This is performed by generating a training set for the nominal circuit, then lumping

all of the training sets for the faulted circuits into on- fault class. During hypothesis testing, a given

test circuit will either be categorized in the "nominal" or "faulted" class (or "none" upon setting

the distance threshold to a nonzero value). Although this method often results in less error than the

use cf eq. 1-12, it is potentially dangerous because the centroid (i.e., mean) of the faulted voltage

vector distribution can lie directly on the nominal circuit's centroid. Likewise, the discrimination

analysis would only account for faults included in the training set. In contrast, eq. 1-12 works for

any fault whose voltage vectors are different from the nominal V.

Part 2 illustrates several examples of the use of hypothesis testing.

1.4. Statistical Fault Analyzer (SFA)

The classification and Go/No-Go concepts discussed in Sections 1.2 and 1.3 have been implement-

ed in the SFA program that accompanies this report. Figure 1-7a describes the flow of the program

when operating in the training set generation mode. The SFA was written in C and intended for

operation under UNIX on SUN Microsystems series 3, 4, or SPARCstation workstations. We now

discuss the program flow.

Input File

Circuits are described in an ASCII file containing modified SPICE syntax. Figure 1-8 shows a typ-

ical file for a one-stage amplifier. The file completely follows SPICE conventions, except for add-
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input file

executeprpoe SPIC

[update training

set file

Ltraining set file

Motealos. file data flow

program flow

Sfault type?

Figure 1.7A. Overall flow of SFA program for the generation of training set data and testing by SAS.
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Ctrainin:gset data file

read training setd f'Iata He

input file
for each fault class and
pooled classes:

compute Y, V, means
check for E singularities preprocessor

SPICE input file

execute SPICE ----------------- --------

SPICE output file
(rawspi

compute test
statistics

1
display and Y]

results

yes next
Monte Carlo

iteration? file data flow

program flow

no

yes next
fault type?

no
display summary

of results

Figure 1.7B. Overall flow of SFA program for the testing of training set data.
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ed syntax that controls the SFA. Lines beginning with the symbol # 1) identify a faulted circuit

component by name, 2) the faulted component's electrical value when faulted, 3) how many Monte

Carlo iterations are to take place for the given fault, 4) an identification label for the given fault

(to define the name of the fault class in SAS), and 5) when the faulty component is represented by

a SPICE device model, the name of the model parameter. One special line, labeled #GOOD N

tells the SFA to simulate the nominal (i.e., good) circuit N times. Lines beginning with %dc are

followed by node numbers. These numbers tell the SFA to dump the DC voltages of circuit nodes

having these numbers to the training set file. Likewise, the %ac lines dump the indicated AC nodal

voltages to the training set file. By default, real and imaginary parts are stored in the training set

file; however, the key word %POLAR will cause AC voltages to be stored as magnitude and

phase.

Pairs of quantities in square brackets define the normal distributions assigned to a given compo-

nent. The first value is the nominal value for a component; the second value represents a standard

deviation of one sigma. When a component is faulted, the square brackets for that component and

the values within them are replaced by the fault value specified in the # line for that component.

For example, the fault type labeled REOPEN would correspond to 3 simulations with the resis-

tance value of RE set at 1 megi. After each of the 3 simulations, the DC nodal voltages at nodes

1, 2, 3, and 7 would be stored in the training set file, and identified by the label REOPEN. Like-

wise, the magnitude and phase of the voltages at nodes 2, 3, and 7 would also be stored in the train-

ing set file.

Preprocessor

The preprocessor in the SFA reads in the input file, interprets the special input file symbols de-

scribed above, and outputs a standard SPICE file. The SPICE file can be viewed by the user by

introducing the key word %TRACE into the input file.

SPICE Execution

Once the SPICE file is generated, it is sent to a batch version of SPICE3C1 (the program is named

bspice, and is available from the Univ. of CA, Berkeley). bspice is executed without operator in-
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Single-stage amplifier
#GOOD 3
#RC 1.0e6 2 RC OPEN
#RE 1.0e6 3 RE OPEN
#RB 1.0e6 2 RBOPEN
#RB 1.0 2 RB Short
#Rbc 1.0 4 RBC Short
#Rbe 1.0 2 RBEShort
#Rce 1.0 2 RCE-Short
#QNL 1.0 2 Q low BF
#QNL 200.0 2 Q_hi BF
%dc 1 2 3 7
%ac 2 3 7
%POLAR
VCC 8 0 5.0
RSDC 8 2 1.0
VIN 10 0 AC 1
CIN 10 1 100.OUF
R3 2 3 [1.2,.06]K
RC 3 6 [1.0,0.0]
RB 1 5 (100.0,5.0]
R2 2 1 [61.0,3.11K
Ri 1 0 [17.6,0.9]K
RE 4 7 [1.0,0.0]
R4 7 0 [300.0,15.0]
Rbc 5 6 [1.0e8,0.0]
Rbe 5 4 [1.0e8,0.0]
Rce 6 4 (1.0e8,0.0]
Q1 6 5 4 QNL
.op
.AC LIN 1 100 100hz
.model QNL NPN(BF=[80,12] CCS=2PF TF=0.3NS TR=6NS CJE=3PF
+ CJC=2PF VA=[50,7.5])
.END

Figure 1-8. SFA input file for single-stage amplifier. See Figure 2-A for
circuit diagram.
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tervention by UNIX system shell routines invoked in the SFA code. NOTE: The version of

SPICE3C1, as supplied by UC Berkeley, contains several ougs that have been corrected for oper-

ation with the SFA. All SPICE3C1 bugs, however, have not been corrected.

SPICE Output

Output from bspice is sent to a file called rawspice. SFA scans this file to extract the nodal voltages

specified in the %ac and %dc lines of the input file. The user does not ever work with the raw-

spice file. Any errors encountered during SPICE execution are reported in a separate output file.

Training Set Data

With proper operation of the SFA, a new file is generated containing the training set data. Figure

1-9 shows the training set file resulting from the input file of Figure 1-8. Note that to keep the size

of Figure 1-9 within reason, the number of Monte Carlo simulations specified in Figure 1-8 for

each fault type is extremely low. Normally this number would be well over 100. When the gen-

eration of the training set data us completed, the resulting file is used by SAS or the SFA (in the

test mode) to test the discrimination.

Discrimination Testing and Hypothesis Tests

Discrimination testing calls for a slightly different operation of the SFA, as shown in the flow di-

agram of Figure 1-7b. Now the training set data generated in the steps above is read into the pro-

gram and used to compute the quadratic distance and hypothesis value for newly generated test

data. The results are displayed as each test point is classified and given a Go/No-Go test.

The discrimination analysis can alternatively be tested using the SAS DISCRIM routine. The SFA

generates data files whose format is compatible with input file descriptions defined in a SAS con-

trol file. An example SAS control file is shown in Table 2-lB. Refer to the SAS Users Guide on

Statistics [13] for a description of this file.

Part 1. Methodology 18



2 3 4 5 6 7 8 9 10
NOMINAL 4.999e+00 1.024e+00 3.891e+00 2.535e-01 -3.030e-03 -5.033e-06
-3.933e+00 -6.533e-03 8.995e-01 1.497e-03

NOMINAL 4.999e+00 1.045e+00 3.933e+00 2.731e-01 -2.926e-03 -4.926e-06
-3.535e+00 -5.95le-03 9.052e-01 1.527e-03

NOMINAL 4.999e+00 9.579e-01 4.231e+00 1.954e-01 -2.827e-03 -5.053e-06
-3.442e+00 -6.152e-03 8.748e-01 1.566e-03
RCOPEN 5.000e+00 7.16le-01 4.994e+00 1.312e-02 1.743e-05 2.559e-07
2.485e-04 3.653e-06 2.447e-01 3.594e-03
RCOPEN 5.000e+00 7.156e-01 4.994e+00 1.093e-02 1.627e-05 2.252e-07
2.619e-04 3.627e-06 2.589e-01 3.583e-03
REOPEN 5.000e+00 1.094e+00 4.999e+00 1.586e-04 1.480e-05 1.777e-08
-1.154e-03 -2.750e-07 2.887e-04 3.328e-07

REOPEN 5.000e+00 1.032e+00 4.999e+00 1.38le-04 1.513e-05 1.958e-08
-Y.096e-03 -3.368e-07 2.809e-04 3.508e-07
REOPEN 5.000e+00 1.123e+00 4.999e+00 1.577e-04 1.515e-05 1.810e-08
--1.237e-03 -2.974e-07 2.734e-04 3.138e-07
RBOPEN 5.000e+00 1.166e+00 4.949e+00 1.243e-02 -6.149e-05 -5.152e-08
--9.383e-02 -8.585e-05 2.304e-02 2.120e-05
RBOPEN 5.000e+00 1.304e+00 4.924e+00 1.961e-02 -7.805e-05 -6.435e-08
-1Y.143e-01 -1.014e-04 2.94le-02 2.623e-05
RBSHORT 4.999e+00 1.062e+00 3.797e+00 2.896e-01 -2.966e-03 -4.601e-C6
--3.790e+00 -5.879e-03 9.128e-01 1.419e-03
RBSHORT 4.999e+00 9.848e-01 4.114e+00 2.197e-01 -2.924e-03 -5.037e-06
-73.589e+00 -6.184e-03 8.900e-01 1.536e-03
RBCSHORT 4.997e+00 1.600e+00 1.606e+00 7.999e-01 5.893e-04 2.799e-05
7.j05e-01 3.327e-02 6.796e-01 3.228e-02
RBCSHORT 4.997e+00 1.619e+00 1.626e+00 8.206e-01 5.998e-04 2.826e-05
7.-666e-01 3.329e-02 6.861e-01 3.233e-02

RBCSHORT 4.997e+00 1.696e+00 1.705e+00 8.961e-01 6.601e-04 3.145e-05
6.-949e-01 3.311e-02 6.766e-01 3.224e-02
RBCSHORT 4.997e+00 1.585e+00 1.592e+00 7.856e-01 5.901e-04 2.854e-05
6.955e-01 3.363e-02 6.744e-01 3.261e-02
RBESHORT 5.000e+00 3.153e-02 5.000e+00 2.327e-02 1.699e-05 7.304e-07
3.370e-05 1.988e-06 7.366e-01 3.164e-02
RBESHORT 5.000e+00 3.510e-02 5.000e+00 2.649e-02 1.762e-05 7.057e-07
3.743e-05 2.138e-06 7.534e-01 3.015e-02
RCESHORT 4.996e+00 1.222e+00 1.080e+00 1.070e+00 1.694e-05 1.942e-08
8.4i83e-06 8.229e-07 8.430e-06 8.203e-07
RCESHORT 4.996e+00 1.140e+00 1.038e+00 1.028e+00 1.623e-05 1.907e-08
8.685e-06 7.880e-07 8.033e-06 7.854e-07
QLOW 5.000e+00 7.056e-01 4.964e+00 1.880e-02 -6.748e-04 -7.606e-06
77.607e- 1 -8.574e-03 3.944e-01 4.447e-03
QLOW 5.000e+00 7.092e-01 4.956e+00 2.064e-02 -6.771e-04 -7.775e-06
78.753e-01 -1.005e-02 4.1.43e-01 4.759e-03
QHI 4.999e+00 1.048e+00 3.920e+00 2.76le-01 -2.967e-03 -4.085e-06
73.553e+00 -4.892e-03 9.083e-01 1.253e-03
QHI 4.999e+00 1.Ql1e+00 4.111e+00 2.432e-01 -2.887e-03 -4.049e-06
-3.283e+00 -4.604e-03 8.983e-01 1.262e-03
END

Figure 1-9. Training set file generated by SFA and readable by SAS.
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The examples provided in Part 2 provide plenty of illustrations of SFA and SAS output. Study of

these examples will make the operating details of the SFA more apparent. Further information on

the use of the SFA program is given in Appendix A.

1.5. Other Details

1.5A. Random Numbers

The Monte Carlo simulations called for random variations in key circuit component values. These

variations take on normal distributions with user-specified means and standard deviations. SFA

generates normal distributions based upon the central limit theorem by the simple C routine:

float nran2(mean,sigma) /* generates normal distribution of mean */
float mean,sigma; /* "mean" and sigma "sigma" */
/* note: sigma corresponds to 1 sigma deviation */

{
int i;
float u;

u =0.0;
for(i=O;i<12;++i)u += ran2(&iseed);
return (sigma*(u-6.0) + mean);

The function ran2 supplies uniformly distributed random numbers between 0 and I (but not inclu-

sive). Within ran2, pseudo random numbers are generated by the linear congruential method[9],

then sent to a shuffling routine to ensure random uniformity. The large modulus seed (a value of

714025) of the generator is sufficiently large to avoid any chance of random number cycling during

the simulations. Furthermore, a 100-bin Chi-squared test applied to ran2 indicates that, to a 5%

level of confidence, the function's output is random.

1.5B Plackett-Burman Experimental Designs

In complex simulations, there are many model parameters that can be modified. However, some

of these parameters will have little or no effect on the behavior of the simulation, while a relatively

few may almost completely determine the simulation output. When all possible parameters are

varied simultaneously, the number of simulation runs required grows exponentially to

an impractical number. If it is the case that the space of simulation outputs can be "spanned" by

varying only a few parameters, then the number of simulations can be reduced tremendously with
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no loss of confidence in the results. In the circuit simulations of this study, many Monte Carlo it-

erations often appear necessary to account for the variability of the circuit component parameters.

Parameter screening can reduce the number of simulations while maintaining a good representation

of circuit variability.

One approach to determining a smaller subset of parameters is by designing experiments for the

simulation. Each parameter under consideration is varied in a specific way, determined by the par-

ticular experimental design used, and the resulting output of the simulation is recorded. Experi-

mental designs can become complex, and can be used to estimate not only the first-order main ef-

fects of each parameter, but also second-level effects and interactions between parameters. How-

ever, for our purposes, we are interested only in determining which model parameters have some

effect and should be included in any further simulation studies, and which parameters have little

effect and can be safely ignored.

To demonstrate this procedure to reduce the number of simulation model parameters, we used a

Plackett-Burman experimental design [12]. These designs are two-level, main-effect-only frac-

tional factorial designs which allow for the efficient estimation of main-factor effects. Although

relatively simple, they are effective for screening out a large number of factors before a more com-

plete experimental or response surface design is implemented. One caveat in their use is that the

main effects cannot be estimated in an unbiased manner unless 1) all interactions between pairs of

factors is negligible; or 2) there are only a few important factors.

Section 2-1K discusses in detail the application of Plackett-Burman experimental design to a one-

stage amplifier.

1.5C. Stepwise Discrimination Analysis

The objective of stepwise discrimination is tu determine the subset of variables which can best be

used to discriminate classes in a discrimination analysis. If too many variables (e.g., voltages) are

included, many of them mighL be highly correlated, the resulting variance-covariance matrices will

be singular or ill-conditioned, and the power of the discrimination will be reduced due to numerical

instability. If too few or incorrect variables are selected, then discrimination analysis will give in-

correct results. With stepwise discrimination, we screen the nodal voltages to arrive at an efficient
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fault classifier. This contrasts to the Plackett-Burman screening discussed above, where simula-

tion parameters that contribute minimally to circuit variability are screened out of the analysis.

Stepwise discriminatica functions similarly to stepwise regression in that a sequence of additions

and deletions to the set of variables included in the discrimination analysis is undertaken. The de-

cision to add or remove a variable is based on a statistical measure, called Wilk's lambda, which

evaluates the increase or decrease in the discriminatory power of the classification.

Wilk's lambda provides a measure of the scatter within a set of classes compared to the total scatter

among all classes. It is the multi-dimensional equivalent to 12 (Fisher's Correlation Ratio) in

analysis of variance, where:

2 SSw
S1 2 (1-13)

Here SS, is the average within-class sum-of-squares over all classes, while SSG is the global sum-

of-squares computed over all data points relative to the global mean V. To obtain the multi-dimen-

sional equivalent using the vector V of voltage variables v, first define T(V) as the variance-cova-

riance matrix for all data together, and Wk(V) as the variance-covariance matrix for the kth class of

g classes. Then, with:
gW = W(V= Wk(V(1-14)

j=l

Wilk's Lambda becomes defined as:

A - IW (V)I (1-15)
IT(V)I

which has a value between 0 and 1. Large values indicate poor separation among the groups, while

low values indicate good separation. In order to determine the effect of adding a voltage variable,

u, to the existing set of variables in V, we define the partial lambda-statistic as:

A (V, u) (1-16)A (uV) =-1-6
A (V)

(Note, uV is not the multiplication of V by the scalar u). The corresponding F-statistic is:

F = n-g-p (I-A(uV)) (1-17)
g - 1 A (uV)

where n is the number of observations, p is the number of variables in V, g is the number of classes,
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and u is used to test the significance of the change in A(V) resulting from the addition of the voltage

variable u. This statistic is the F-to-enter statistic for the entry of u into the set V, or the F-to-re-

move statistic for the deletion of u from the set (Vu). Determination of the entry or exit of the vari-

able u depends on whether this F-statistic is greater or less than a given threshold which is set by

the user. At each step, the F statistic is computed for each of the voltage variables in V. The vari-

able whose F-statistic is least and less than the tolerance level is removed. This removes the vari-

able which reduces the discriminatory power of the analysis the least. If no variable is removed,

then all variables not included in V are examined, and the one for which the F-statistic is largest

and which satisfies the criterion to enter is added. This continues until no further changes to the

variable set occur. Stepwise discrimination, as used in this study, begins with no variables included

in V.

While an automatic variable selection technique may not provide the best model for a specific data

set, its cautious application can provide considerable information. For best results, the output of a

stepwise discrimination analysis should be used as a supplement to the user's knowledge of the

data.

1.5D. Nonparametric Discrimination

In some situations, the inherent assumption of normality in the distributions of the simulation out-

put voltage vectors V may not hold. In this case, discrimination analysis must resort to a nonpara-

metric method. One simple technique explored in this study makes use of the "nearest k neighbors"

method. Figure 1-10 illustrates this method for a simple bivariate classification. In this case, the

voltage vectors are made up of the two voltage components v1 and v2. Three types of faults are

possible in the example, and our aim is to determine which of the three faults the test point x be-

longs. The training set data for the three fault types is shown in Figure 1-10, where each fault type

takes on one of three types of points (a square, triangle, or circle). The nearest k neighbors method

simply tallies how many training set points from each fault type fall near the test point. Only the

k nearest neighbors to the test point are included in the tally (hence the name of the method).

A major drawback of this technique is that it potentially requires long computational time since the

distances between the test point and all points in the training set must be computed. The distances

must then be sorted. In view of the long computations, this technique was used sparingly, and

yielded similar results to the classical discrimination method when it was used. Preliminary

screening of training set data points can reduce the computation time of determining the distances.
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Figure 1-10. Nearest k neighbor approach to classification. See text for explanation.

1.6. Direct Circuit Solution

Earlier in the program, circuit simulations were carried out by directly solving the systems of equa-

tions that describe the circuits. Both DC and AC solutions were carried out. The nonlinear equa-

tion solving routine HYBRD was used to determine the DC operating points, while UNPACK rou-

tines solved the system of AC phasor equations to determine the AC response of the circuit. Data

resulting from the direct solutions were dumped to ASCII files, and subsequently analyzed using

SAS in a manner similar to that described for the SFA software. Direct solution was later aban-

doned in favor of the SPICE-based approach that was employed throughout most of the program.

Nevertheless, the direct solution method helped to provide verification of the SPICE solutions dur-

ing the transition to SPICE.
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1.7. Modeling Error Considerations

1.7A, Introduction

All of the analyses described in Part 2 of this report have relied on simulations and the credibility

of the SPICE device models to perform fault classifications, and to determine "nominal" operating

conditions for Go/No-Go testing. Simulations were required because of the obvious impracticality

of fabricating hundreds or thousands of circuits for statistically describing the distributions of even

the major fault categories only. Given the probability of encountering a specific fault type, thou-

sands of circuits may be required to observe only 100 circuits of the given fault type. Moreover,

extensive measurements and physical inspection of the faulted circuits would be required to ascer-

tain the fault type present. Thus, the fabrication of ICs for the purpose of building a statistical da-

tabase is impractical, except when IC fab lines having high production volume are available as a

source of the IC data. Simulation and modeling provide a practical alternative to device fabrication

and inspection for faults.

The fault detection and classification algorithms that we have used make use of simulated data, not

real measurement data. Therefore, how can the classification and fault detection algorithms de-

rived from the simulated data be used in practice to predict faults in real linear microcircuits? Be-

low we discuss a method for verifying and calibriting Cie simulations in order that the fault dis-

crimination rules will apply to actual circuit data.

1.7B. Verification and Calibration Method

Model verification and calibration begins by obtaining real measurement data from samples of ICs.

By simply comparing the response of a given circuit to its specification, a determination can be

made whether or not the circuit is acceptable; separation of good and bad circuits then follows, with

further separation by fault type when possible. Collecting the responses observed from many nom-

inal and faulted circuits enables one to statistically describe the response of these circuits. Using

the statistical method of hypothesis testing, the distribution of the actual data can then be compared

to the distribution obtained from runs made using the simulation model where the circuit parame-

ters are randomly varied over their specification ranges, with and without the presence of faults. A

determination of whether or not the model adequately describes the actual circuit behavior is then
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made. F the model does not adequately l escribe the actual circuit behavior, then the model is cor-

rected and/or calibrated so that it does. Once these model adjustments are made so that the data

from the simulation model and the data collected on actual circuits are statistically indistinguish-

able, the simulation model can be used to construct the fault discrimination rules for classification.

We now describe an algorithm for model verification and calibration:

Step 1: Collect output response data from actual circuits taken from a cross section of pro-

duction lots, wafer location, manufacturers, etc. in order to represent the variation

in the circuit's response that can be expected during manufacture or in the field.

Segregate the nominal (or acceptable) circuits from the faulted (unacceptable) cir-

cuits using the criterion of whether or not the output responses are within the spec-

ification limits. For statistical reasons, the number of nominal circuits should ex-

ceed 30 + (the number of responses). For example, if there are 5 output responses

(e.g., 5 voltage measurements), output response data should be collected from at

least 35 nominal circuits.

Step 2: Statistically test whether or not the simulated circuit data are equivalent to the actual

circuit data. Bin the actual data into K bins. If the number of different types of out-

put responses N exceeds 1, then these bins represent regions in N-space. Count the

number of observations from both the actual (ai)and simulated (si) data that lie in

each of these bins. The binning of the data should be such that the bins cover the

entire data set and a reasonable number of actual circuit responses all lie within each

bin. Then perform a statistical Goodness-of-Fit test to determine whether or not the

two distributions are statistically indistinguishable. For example, compute:

K (a i -si ) 2
iX" 1 ai (1-17)

ial

where ai and si are the number of actual and simulated circuit output responses fall-

ing in the i th region (or bin), respectively. If X2 is greater than the critical Chi-

square value with K-1 degrees of freedom and a significance level taken from the

standard statistical Chi-square tables, then reject the hypothesis that the simulated
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data and the actual data are equivalent and go to Step 3. Otherwise, accept the hy-

pothesis that the two distributions are indistinguishable and stop.

Step 3: Correct any modeling errors, or errors in assumptions, and go back to Step 1. If

there are no apparent modeling errors, then calibrate the model to the actual data by

adjusting the mean and/or rescaling the data for better match of the simulated and

actual data. Use this same calibration procedure to adjust the output responses from

each of the fault classes as well as the nominal circuit class during the construction

of the fault discrimination rules.

The goal of the above algorithm is to 1) identify major errors in either the model or the assumptions

that the model is based upon, and 2) to calibrate the model to resemble actual data. The latter goal

ensures that the discrimination rules generated from the simulations can be applied to real circuits.

As with all models, one must sometimes rely heavily on the modeler's knowledge and/or intuition

when extending the model to circuit operating conditions (e.g., faults) that cannot be empirically

verified. For example, we have assumed that the SPICE device models remain valid during nom-

inal and faulted circuit operations. Because of the impracticality of collecting data from circuits

that are faulted and where the faults are known with certainty, this "leap of faith" is necessary.

However, by relying on the modeler's experience and sound circuit design practices, the trends in

a given circuit's response in the presence of faults often is predictable. Thus, the simulated faults

should have some resemblance to reality.
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Part 2. Fault Analysis Examples

2.0. Introduction

In Part 2 we apply the methods described in Part 1 to various types of analog circuits. We start
with the simple amplifier circuit, and analyze it through direct solution. All subsequent circuits

make use of the SFA program.

2.1. Amplifier circuit

2.1A. Circuit Description

Our fault analysis study began with a simple one-stage amplifier circuit. This circuit is an NPN
bipolar transistor (BJT) connected in a common emitter configuration (Figure 2-1A). The intrinsic
device model (indicated by the dashed lines) fo,,ows the Gummel-Poon model in SPICE [4]. The
resistors Rbc, Rce, and Rbe have been added to emulate inter-port leakages and shorts. Nominal

values for the resistors are indicated in Figure 2-1A. The transistor's nominal characteristics are
those specified for a device in the 741 Op Amp [4].

The nodal DC voltages are determined by finding the solution (i.e., the nodal voltages) to the fol-
lowing set of equations (refer to Figure 2-1A for the node numbers):

node 1: 0 = VI.(l/R1 + l/R2 + l/Rb)- V2/R2 - V5/Rb
node 2: 0 = -V1/R2 + V2 .(1/R 2 + 1/R3 + 1/Rs) - V -/R3 . Vsupply/R s
node 3: 0 = -V2/R3 - V6/Rc + V3 .(1/R 3 + l/Rc+ 1/RL)
node 4: 0 = V4/(Re + R5)+ Ie

node 5: 0 = -V1/Rb + V5/Rb + Ib
node 6: 0 = -V3/Rc + V6 /Rc + Ic

Ib, Ic , and le are nonlinear currents entering the base, collector, and emitter of the device, respec-
tively; the above system of six equations in six unknowns (V1 to V6) is consequently nonlinear and

requires special solution techniques. In our case, we have used the public-domain MINPACK

HYBRD routines [8].
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The device equations are those used in the Gummel-Poon model. We have followed the SPICE

implementation:

base: Ib = Ibel/BF + Ibe2 + Ib I/BR + Ibc2 + Vbc/Rbc + Vbe/Rbe

collector: ' c = 'bel/Qb - Ibcl/Qb -Ibcl/BR - I2 + (Vbe-Vbc)/Rce

emitter: Ie = -( b + I)

with:
Ibei= IS.(exp(VbeNF.Vt) - 1)
Ib2= ISEo(exp(Vbe/NE.Vt) - 1)

Ibc1= ISo(exp(VbJ/NRVt) - 1)

I 2= ISC.(exp(Vbc/NC*Vt) - 1)

and:
Q1 = 1/(1 - Vbc/VAF - Vbe/VAR)

Q2 
=  Ibel/IKF + Ibcl/IKR

Qb = Q,"(1 + SQRT(l + 4Q2))/2

The parameters are as follows:

BF ideal maximum forward beta (= 80.0)
BR ideal maximum reverse beta (= 1.0)
IS transport saturation current (= 1.0e-16)
IKF corner for forward beta high current roll-off (= 1.0e20)
IKR corner for reverse beta high current roll-off (- 1.0e20)
ISC base-collector leakage (= 0.0)
ISE base-emitter leakage (= 0.0)
NC base-collector leakage emission coefficient (= 1.0)
NE base-emitter leakage emission coefficient (= 1.5)
NF forward current emission coefficient (= 1.0)
NR reverse current emission coefficient (= 1.0)
VAF forward early voltage (= 50.0)
VAR reverse early voltage (= 1.0e20)
Vt kt/q (= 0.002585 at 27 deg. C)

The DC nodal voltages of the common-emitter circuit were determined using a FORTRAN sub-

routine, then SPICE for verification. The results are as follows:

node 1 2 3 4 5 6
custom 0.9972 5.0000 4.086 0.2311 0.9963 4.086
SPICE 0.9973 5.0000 4.087 0.2308 NA 4.087
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Minor discrepancies are likely due to the assumed values for zero and infinite resistance. Other-

wise, the values are in perfect agreement and indicate that the equation solving works. The SPICE

runs were performed using IG-SPICE on a SUN-4 and P-SPICE on a PC. The SPICE results ex-

actly agreed with each other.

2.1B. Simulation of Catastrophic . aults

Catastrophic (i.e., hard) faults have been modeled through Monte Carlo simulation for the one-

stage amplifier circuit described above. The analysis neglected multiple faults; that is, only a sin-

gle catastrophic fault was introduced per s:mulation run. The induced faults were catastrophic re-

sistor failures that represent transistor failure. In particular the resistances Rb, R, and Re, which

are nominally 0.1 Q, were assigned relatively large values of 1 Megil, while the resistances Rbc,

Rbe, and Rce, which are nominally infinite, were assigned relatively small values of 10 .2. Table

2-1A lists the summary Monte Carlo statistics for each of the six DC voltages, and it can be used

to compare faulted with nonfaulted behavior per measured DC voltage.

Cursory examination of Table 2-1A reveals quite noticeable differences among the various groups

and suggests that statistical discrimination techniques would be effective not only in discriminating

between faulted and non-faulted behavior, but also in discriminating among the faulted groups.

Such an analysis was performed using a the DISCRIM procedure in SAS. The results of this anal-

ysis, which we will now describe, show perfect discrimination for submitted test sets.

2.1C. Fault Discrimination

SAS's DISCRIM routine was used to discriminate among the catastrophic faults and to assign them

to specific fault groups. Given a training set of data that is multivariate normal, the DISCRIM pro-

cedure computes a discrimination criterion based on a multivariate measure of the generalized

squared distance (see Part 1, eq. 1-8).

Our training set consisted of 2000 simulations per fault group. Each simulation run resulted in a

multivariate observation vector consisting of three DC voltages V3, V4, and V5 (we note that cor-

relations among the DC voltages reduced the relevant number of voltages from 6 to 3). The SAS
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test of homogeneity of individual within-group covariances revealed a lack of homogeneity; hence,

the within-group covariance matrices were used to construct the discriminant function, rather than

the pooled covariance matrix. This resulted in an asymmetric distance function, as shown in the

SAS summary table (Table 2-1B).

Out test set consisted of 1000 simulations per group, generated using a different random number

seed to ensure that the test and training sets were different. Table 2-1B, showing SAS output, in-

dicates that none of the test events were misclassified.

2.1D. Discrimination and Classification of Parametric Faults

Parametric (soft) fault analyses have been performed for the single one-stage amplifier described

above. The present discussion applies to DC voltages only. The primary goal of these analyses

was to determine the "fault continua" of circuit parameters and to determine thresholds along these

continua where soft faults begin to have a detectable difference upon the nominal DC circuit per-

formance; that is, to perform simple discrimination between nominal and soft-faulted circuits.

(Nominal performance here refers to performance of the circuit given stochastic variations of the

circuit parameters over their tolerance ranges, and is characterized by a cluster of points in a mul-

tivariate voltage response space.) Thus, given parametric deviations of a circuit parameter from its

nominal value (and outside its specified tolerance range), we also attempted to partition each of the

fault continua into discrete classes for actual classification of soft-fault behaviors of different cir-

cuit parameters, as we were so successful in doing previously for catastrophic faults.

We initially chose to fault the transistor base-emitter leakage resistor Rbe parametrically. Under

nominal conditions, this leakage resistance is for practical purposes infinite (actually, 1 x 1010 0

in our simulations), while under catastrophic fault conditions it is near zero (actually 10.0 Q in our

simulations). Soft-fault data were generated by ,arying the resistance in powers of 10 from 100.0

2 to lx 109Q . Five hundred (500) values were generated for each of 8 soft-fault classes: Rbe 2 (100

Q) to Rbe9 (1 x 109 Q), while "Good" (nominal) and "Hard" fault classes had 512 values each (these

two classes contained more values because they came from prior analyses; they were generated,

however, with the same random number seed).
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Table 2-lB. Explanation of SAS Discrimination Analysis Table
(table given on following page)

Table 2-1B gives the output from a typical SAS discrimination analysis. The input file for
the analysis is shown below the table.

Looking across the table, we have the classification categories of the faults, namely "good",
"faulted Rb," "faulted Rbc," etc. Looking down the table, we have the type of fault applied.
For each fault type applied, the first row gives the number of simulations classified under
each fault category; the second row gives the percentage of the number of simulations clas-
sified under each fault category. To illustrate the use of the table, consider the faulting of
Rbc, where this component takes on the value of 10 ohms when faulted (from a nominal

infinite ohms). 1000 Monte Carlo simulations were applied to the circuit under this fault
condition, and all 1000 results were classified under the category of "Rbc fault." In other
words, 100% of the simulations where Rbc is faulted and all remaining components have
nominal variations were properly classified. Likewise, all other fault conditions (including
"good" operation) were 100% properly classified.

This result shows that catastrophic faults in the one-stage amplifier can easily be classified,
assuming the restrictions to the designated fault types, the accessibility to the voltages of
the analysis, and the nominal component variation used in the simulations. However,
small shifts in component parameters, i.e., parametric drift, will likely cause discrimination
error.
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Table 2-1B. Catastrophic Faults

SAS 10'03 THURSDAY. DECEMBER 21, 1989 I

DISCRIMINANT ANALYSIS CLASSIFICATION SUMM4-RY OR TEST DATA- WOR.TEST

GENERALIZED SQUARED DISTANCE FUNCTION POSTERIOR PROBABILITY OF MEMBERSHIP IN EACH FAULT.

2 -1 2 2
D (X) - (X-C)' COV (X-X) + LN ICOV I PR(JIX) - EXP(-.5 D X') / SUM EIP(-.5 D (X))

J 3 3 3 3 3 K K

NUMBER OF OBSERVATIONS AND PERCENTS CLASSIFIED INTO FAULT

FROM

FAULT good zb tbc rhe rc ree re TOTAL

good 1000 0 0 0 0 0 0 1000
100.00 0.00 0 00 0.00 0 00 0.00 0 00 100.00

rb 0 1000 0 0 0 0 0 1000
0.00 100.00 0 00 0.00 0.00 0.00 0.00 100.00

rbc 0 0 1000 0 0 0 0 1000

0 00 0 00 100 00 0 00 0 00 0.00 0 00 100 00

rbe 0 0 0 1000 0 0 0 1000

0.00 0 00 0 00 100.00 0.00 0.00 0 00 100 00

ro 0 0 0 0 1000 0 0 1000

0 00 0 00 0 00 0.00 100 00 0.00 0 00 100.00

re 0 0 0 0 0 1000 0 1000

0.00 0.00 0 00 0 00 0.00 100.00 0 00 100.00

0 0 0 0 0 0 1000 1000

0 00 0 00 0 00 0 00 0 00 0.00 100 00 100.00

TOTAL 1000 1000 1000 1000 1000 1000 1000 7000

PERCENT 14 29 14.29 14.29 14.29 14.29 14 29 14.29 10. 20

PRIORS 0 1429 0.1429 0 1429 0.1429 0 1429 0.1429 0 1429

data fauLts,

inf ile ,aLxs.cireult.dsCerIiauLt dat'.

input Fault I 1V v3 v4 vS v6.

data Test,

lnffe j1aj.%&.c,-cujtdsr)@t dat'.

xnput FauLt S vi v4 v3 v4 v5 /6,

P oc Dsc ata a ults S ?ool-lest Wcov W er: Froy P eer O as-Fa LtCal.

Var v
4 
v5 'S,

Frec D:scre Oaa'a-FaultC : sda'ie$t etl+stl:r,

C.tclae5 Fat.

:a6 "a4 v2 v.
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These data were used as a training set for DISCRIM. After applying the training set data to test

the discrimination, we arrived at the results shown in Table 2-C. For the "harder" soft-fault class-

es (i.e., those classes with resistance values less than or equal to lxl04 9i; namely, the four fault

classes Hard, Rbe2, Rbe3 , and Rbe4), the classifier succeeds, for the most part, in unambiguously

classifying the faults into their appropriate fault classes. For the "softer" faults (i.e., those above

lxlO4 ohms; namely, the six classes Good and Rbe 5 to Rbe9 ), however, the classifier function per-

forms poorly and seems to want to classify the majority of the faulted circuit., within the lxl06 KI

class. The reason for the poor performance becomes apparent when one examines the multivariate

means and variances of the soft-fault clusters. For these softer-fault classes, there is very little nu-

merical difference in the means and variances. The classifier appears to be choosing most often

that cluster which best represents the 6 clusters.

A soft-fault analysis was also performed for the transistor's forward beta (BF) as one representa-

tion of transistor gain change. Here five fault classes were chosen: Class 1 for catastrophic low

(BF values from 0 to 40); Class 2 for soft low (BF values from 40 to 70); Class 3 for nominal (BF

from 70 to 90); Class 4 for soft high (BF from 90 to 120); and Class 5 for catastrophic high (BF
from 120 to 200). Five hundred voltage sets were generated in each class. The SAS discrimination

results are shown in Table 2-ID. Once again, the classifier function works better on the high and

low catastrophic faults than it does on the softer faults, although the overall performance of the

classifier is poor.

To see how this classifier would work when an independent set of data is used as the test data, we

generated test data consisting of 20 points for each integer value of BF between 1 and 200, for a

total of 400 test data points. The SAS results for this test are shown in Table 2- 1E. The classifi-

cation results are what would be expected from the poor performance of the calibration data; hence,

no improvement in discrimination was obtained.

Part 2. Examples 37



Table 2-1C. Parametric Faulting of Resistor Rbe

SAS DISCRIM CASSIFICATION SUW.ARY FOR RBE CALIBRATION DATA: WORK.FAULTS

GENERALIZED SQUARED DISTANCE FUNCTION: POSTERIOR PROBABILITY OF MEIMERSHIP IN EACH FAULT:

2 - -1 2 2

D (X) - (X-X)" COY (X-X) + LN ICOV I PR(JX) - EXP(-.5 0 X)) I SUM EXP(-.5 0 X))
3 3 3 3 3 3 K K

NUMBER OF OBSERVATIONS AND PERCENTS CLASSIFIED INTO FAULT.

FROM

FAULT good hard rb*2 rb*3 rba4 rb*5 rbe6 rb*7 rbe8 rbe9 TOTAL

good 5 0 0 0 0 26 275 203 3 0 512

0.98 0.00 0.00 0.00 0.00 5.08 53 71 39.65 0.59 0.00 100.00

hard 0 510 0 0 0 2 0 0 0 0 512

0.00 99.61 0.00 0.00 0.00 0.39 0.00 0 00 0.00 0.00 100 00

rbe2 0 0 498 0 0 2 0 0 0 0 500

0.00 0.00 99.60 0.00 0.00 0.40 0.00 0.00 0.00 0.00 100.00

rb*3 0 0 0 498 0 2 0 0 0 0 500
0.00 0.00 0.00 99.60 0 00 0.40 0.00 0.00 0.00 0.00 100.00

rbe4 0 0 0 0 495 5 0 0 0 0 500

0.00 0.00 0 00 0.00 99.00 1.00 0.00 0 00 0 00 0.00 100 00

rbe5 0 0 0 0 0 83 340 75 0 2 500

0.00 0.00 0.00 0.00 0.00 16.60 68 00 15 00 0.00 0.40 100.00

rbe6 3 0 0 0 0 30 277 186 1 3 500

0.60 0.00 0.00 0.00 0.00 6.00 55.40 37.20 0.20 0.60 100.00

rbe7 4 0 0 0 0 28 268 197 3 0 500

0.80 0.00 0.00 0.00 0.00 5.60 53.60 39.40 0.60 0.00 100.00

rb*8 4 0 0 0 0 28 266 199 3 0 500

0.80 0.00 0.00 0.00 0.00 5.60 53.20 39 80 0.60 0.00 100.00

rbe9 4 0 0 0 0 25 267 200 3 1 500

0.80 0.00 0 00 0.00 0 00 5.00 53 40 40 00 0 60 0 20 100 00

TOTAL 20 510 4908 498 495 231 1693 1060 13 6 5024

PERCENT 0 40 10.15 9 91 9.91 9.85 4 60 33 70 21 10 0.26 0 12 100 00

PRIORS 0.1000 0 1000 0.1000 0.1000 0 1000 0 1000 0 1000 0 1oIo 0 000 0 1000
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Table 2-1D. Parametric Faulting of Forward Beta Parameter BF
(testing performed using training set data)

SAS DISCRIM CLASSIFICATION SU9ARY FOR BF CALIBRATION DATA' WORK FAULTS

GENERALIZED SQUARED DISTANCE FUNCTION POSTERIOR PROBABILITY OF 0-ERSHIP IN EACH FAULT

2 -1 z 2

D X) - (X-X)' COV (X-X) + LN ICOV I PR(JIX) - EICP(-.5 D X)) I SUMC EXP(-.5 D (X)),
3 3 3 .0 3 3 K K

NUMBER OF OBSERVATIONS AND PERCENTS CLASSIFIED INTO FAULT

FROM

FAULT 1 2 3 4 5 TOTAL

1 361 130 2 2 3 500
72.20 26 00 0.40 0.40 1.00 100.00

2 85 292 17 47 59 500

17 00 58.40 3 40 9 40 11 80 100 00

3 66 ".4 34 50 106 S00

13.20 48 80 6.80 10.00 21.20 100.00

4 46 191 30 90 143 S00

9.20 38 20 6.00 18.00 28 60 100 00

5 32 166 27 88 187 500
6.40 33 20 5.40 17.60 37 40 100.00

TOTAL 590 1023 110 277 S00 2500
PERCENT 23.60 40.92 4.40 11.08 20 00 100 00

PRIORS 0 2000 0.2000 0.2000 0.2000 0 2000
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Table 2-1E. Parametric Faulting of Forward Beta Parameter BF
(testing performed with independent test data)

SAS DISCRIM CLASS'FICATION SUARY FOR BF TEST DATA: WORK TEST

GENERALIZED SQUARED DISTANCE FUNCTION: PO3TERIOR PROBABILITY OF YMMERSHIP IN EACH FAULT-

2 - -1 2 2
D (X) - (X-X 3' COV (X-X + LN ICOV I PR(J3X) - EXP(-.5 D (X) I SUM EXP(-.5 D (X)
3 3 3 3 3 3 IC K

NU ER OF OBSERVATIONS AND PERCENTS CLASSIFIED INTO FAULT:
F'ROM

FAULT 1 2 3 4 5 TOTAL

1 532 235 6 4 3 780

68.21 30 13 0 77 0 51 0.38 100.00

2 97 354 36 41 72 600
16.17 59.00 6.00 6.83 12.00 100.00

3 45 196 25 55 79 400

11.25 49.00 6.25 13.75 19.75 100.00

4 65 249 44 87 155 600

10.83 41.50 7.33 14.50 25.63 100.00

5 112 521 96 264 625 1620

6 91 32.16 6.05 16 30 38 58 100.00

TOTAL 851 1555 209 451 934 4000
PERCENT 21.28 38.88 5.23 11.28 23.35 100.00

PRIORS 0.2000 0.2000 0.2000 0.2000 0 2000
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2.1E. Effect of Discriminator Training Set Size

To improve the efficiency of the training set construction, we have investigated the effect of reduc-

ing the training set size.

Table 2-1F shows the effects of reducing training set size. This table was constructed by applying

one of five possible catastrophic faults to the one-stage amplifier, as described in Section 2.1B.

These faults were: base open, collector open, emitter open, base-collector short, base-emitter short

emitter-collector short. The number of incorrect classifications are given in Table 2-1F. "Train-

ing set size" refers to the number of sets of data per fault type (from Monte Carlo runs) that were

used to generate the discrimination function. "Validation size" is the number of sets of data, for

each fault type and from Monte Carlo runs, applied to test the discriminator.

Table 2-1F. Effect of Training Set Size

trainine set size 10 50 200
validation size

10 0* 0 0
50 0 0* 0

200 2 0 1*

(* test and validation data sets were the same,otherwise
they were different data sets)

We can see from Table 2- IF that a reasonable amount of fault classification accuracy has occurred

even for only 10 training sets (- 99% accuracy). We will therefore have considered using reduced

training set sizes for the larger circuits, where more data must be analyzed.

2.1F. Comparison of DC and AC Results

During realistic IC probing measurements, the intrinsic nodes of a transistor may often not be avail-

able for measurement. In fact, the notion of series lead resistance is only conceptual in many IC

transistors. A chip's series resistance may actually be for modeling convenience only, and reflect

resistances internal to the transistor (e.g., channel and metallization resistances). In other cases,

the "lead" resistances are true series resistances that cannot be fully probed. For the latter case,

we have considered the situation where only a limited number of voltage nodes are available for

probing.
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Referring to the one-stage amplifier of Figure 2-lA, we now assume that only the points Vin,-

V2,V3, V4 , and Vsupply are available for both AC and DC probing. Figure 2-1B shows the AC

small-signal model used for the simulations, which follows that of SPICE. Following the SAS dis-

crimination procedures discussed in our earlier reports, the results are now more disappointing, yet

instructive.

Faults were simulated by applying the component values shown in Table 2-IG, one at a time, to

the circuit simulations. The simulations made use of our custom simulation program described in

earlier reports. A variety of results occurred, including numerical instabilities in the DC solution

for the cases of R2 shorted, R3 opened, and Re opened. We therefore dropped these cases from

the analysis (which is not a serious limitation, since in reality the circuit would obviously not

work). The AC solutions failed for the cases R1 open and Rc shorted -- again an obvious failure

during measurement. Also note that R had to be set to 103 to emulate a faulted condition; "open-

ing" this value to 1010 caused numerical problems as well. 100 runs for each fault type were typ-

ically applied. This value was used in view of our earlier results.

Results:

DC Only Analysis:

The operating conditions were Vsupply = 5V, R1 = 1 megohm. Nominal variations of all compo-

nents were 10% (for 1 sigma). Applying only the DC points of Vin, V2, and V3 to SAS resulted in

the failure to classify 100% of the "Good" cases correctly. In other words, runs of Good circuits

(no faults present) could not be distinguished from certain faulted cases.

AC analysis:

This analysis applied a 100 Hz, IV signal to the circuit, and included, in addition to the DC nodes

above, the real and imaginary parts of the AC nodal voltages from nodes Vin, V2, V3 , and V4. SAS

analysis resulted in correct classification of 12% of the Good cases. Thus the introduction of AC

measurements somewhat improved the classification, although it was still poor.
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Table 21G. Catastrophic Fault Simulations
(refer to compokients in Figure 2-1A;

all values in ohms)

Component Fault Value
R, short 10-3

R, open 1010

R2 short 10-3

R2  open 1010

R3  short 10-3

R3  open 1010

R3  short 10-3

R3  open 1010

Rb open 1010

Re open 1010

Re open 1010

Rbe short 10-3

Rbc short 10-3

Rce short 10-3

BF low 10
BF high 50
VAF low 5
VAF high 95
FC low 0.05
FC high .95
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in both the AC and DC cases, most of the faults were incorrectly classified into the categories of

FC (the forward bias depletion capacitor coefficient) low and high. In other words, altering this

parameter had minimal effect on the performance of Good circuits. This is to be expected, since

at 100 Hz, capacitive effects are effectively undetectable. At higher frequencies, this is would not

-be the case. In fact, reducing the component tolerances to effectively no randomization (zero tol-

erance) yielded 100% classification of the good cases as a "FC low", further confirming our notion

that FC has no effect on the circuit operation.

Since faulting FC had no effect on the circuit operation, we removed it from subsequent analyses.

For zero component tolerances, 100% of the Good circuits were then correctly classified. How-

ever, as the component tolerances were increased to 10%, only 44% of the Good circuits were cor-

rectly classified as "Good." 40% of the Good circuits were misclassified as "open Re," 8% as "BF

low," and 8% as "VAF high." We therefore conclude that, given the operating conditions of the

circuit and the test nodes, we cannot effectively separate the faulted cases from the non-faulted cas-

es. Obviously a better choice of operating conditions is needed for better fault discrimination

(more on this below).

For curiosity, we eliminated all faults that did not correspond to resistors opening or shorting, and

used a component tolerance of 10%. Discriminant analysis resulted in 60% of the Good circuits

being classified as "Good," with the remaining 40% incorrectly classified as "Re open." Once

again we have a situation where now a DC component change has minimal effect on circuit oper-

ation, which leads to difficult fault discrimination. Section 2.1G of this report will discuss this

matter in more detail.

Finally, in order to check if SAS uses order as a classification criteria when two classes of data are

identical, we relabeled class "Good" as "OGood" to force the label of the "Good" class to alphabet-

ically precede all other fault classes. With a 10% tolerance on all components, there was no dif-

ference in the classification regardless of the placement of the Good category in the labeling (i.e.,

only 12% of the Good circuits were classified as "Good"). However, when the tolerance was re-

duced to zero, the original and erroneous classification of zll Good circuits as "FC low" disap-

peared, and all Good circuits became classified as "Good"! In other words, when SAS cannot dis-

tinguish between identical classes of data, it simply chooses the class corresponding to the alpha-
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betically first label. In any event, the importance of this exercise is to realize that when certain

types of simulated faults produce circuit responses that cannot be distinguished from normal

(Good) circuits, classification may become extremely erroneous.

2.1G. Response Screening

In larger circuits where there are many nodes operating over nany conditions, much of the data to

be used in a discrimination analysis may exhibit linear dependencies that cause the discrimination

computatious to be much longer than they have to. In other words, much of the data may be re-

dundant and therefore can be eliminated.

To investigate this concept, the SAS input data from the Monte Carlo analyses was ran through the

computation of partial correlation coefficients. Variable pairs were eliminated that had high cor-

relations. In the present example, and choosing correlation coefficients of 0.8 or greater as the

criteria for elimination, we eliminated the imaginary parts of Vin, V2, and V3. Running an analysis

where FC was not faulted yielded a degradation of our Good classification of 44% to 20%. We

conclude that the present model may need all the nodes, and more, for proper fault discrimination.

For other circuits, however, this technique still might be useful.

Note that the results presented herein are poor compared to the typically 98 to 100% proper clas-

sification of faulted and Good circuits described in our earlier reports. In the earlier work, all cir-

cuit nodes were probed. This illustrates the importance of obtaining as much data as possible for

accurate fault detection.

2.1H. Effect of Collector Resistance Variations on Fault Detection.

During our discriminant analysis, we observed a consistent misclassification of Good circuits as

falling into the "R. open" class. (Also recall that we could not fully open Rc to 1010 ohms, and

had to restrict the open circuit emulation to 103 ohms.) It turns out that if the device is operating

in saturation for a given base-emitter voltage, the current flow through R3 will remain constant

since the transistor acts as a constant current source. In other words, the voltage drop from nodes

2 to 3 (see Figure 2-1 C) will remain constant over a large range of R. Since we are using either
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V2 or V3 (and not Vc), detection of changes in Rc is difficult at best. One possible method of de-

tection is to ensure that a full open at Rc draws the drain current to zero, thereby changing the volt-

age drop V2 - V3 (for a very large RL). In other words, the load line for the collector would inter-

sect the I-V characteristics of the device at collector voltages below the "knee." Unfortunately,

instabilities in the numerical methods precluded this effect. However, this problem was overcome

by using SPICE, as will be discussed in the next section.

2.11. Single-Stage Amplifier Revisited (SFA Program Used)

To verify the operation of the Statistical Fault Analyzer (SFA), we once again looked at the one-

stage amplifier of our earlier work. Figure 2-1D shows the circuit simulation input file, and Table

2-1H summarizes the applied faults. Note that in this run, faults were at the transistor only. Table

2-1I summarizes the SAS DISCRIM results when looking only at the DC voltages of nodes Vin,

V2 , V3, and V4 (see Figure 2-1A). Table 2-1I indicates severe misclassification among the "nom-

inal," "QHI" (beta high), and "RB short" categories; i.e., the Q_HI and RB short categories cannot

be readily distinguished from the nominal runs.

Table 2-1J shows the result of the SAS DISCRIM analysis where the AC voltages at nodes labeled

V2 , V3, and V4 (Figure 2-1A) are included along with the DC values. We now observe almost

perfect classification of all applied faults. In other vords, the methods that we have used to fault

Rb and B" a affect the AC characteristics of the device much more than the DC characteristics.

This points to the necessity of applying appropriate test signals to aid in the discrimination.
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knee voltage No change V3 detectable
for Rc change resulting in
these load lines

--

.... ................ .. P.......... r .............. .... . "..... ...... : .-:.
.............. aa.,o ,

Collector Voltage

Change in V3 detectable with this load line

Figure 241C. Effect of changing load lines on the ability to detect changes in V3.
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TableZ-1H. Catastrophic Fault Simulations
(refer to components in Figure 2-i1D;

all resistance values in ohms)

Component Fault Value
RC open 106

RE open 106

RB open 106
RB short 1.0
RBC short 1.0
RBE short 1.0
RCE short 1.0
BF (QNL) low 1.0
BF (QNL) high 200.0

Single-stage amplifier
#GOOD 200
#RC I .0e6 200 RCOPEN
#RE 1.0e6 200 RE...OPEN
#RB 1.0e6 200 RBOPEN
#RB 1.0 200 RBShcxt
#Rbc 1.0 200 RBCShort,

MRe 1.0 200 RBEShort
#Rce 1.0 200 RCIEShort
#QNL 1.0 200 Ojlow BF
#QNL 200.0 200 Q-hi BF
%dc 12 23 7
%ac 23 7
VCC 8 05.0
RSDC 82 1.0
VINl10O0AC 1
CIN 10 1 100.OUF
R3 2 3 [1.2,061K
RC 361[1.0,0.0]
RB 1I5 [100.0,5.0]
R2 21 [61.0,3.1]K
RI 1 0 [17.6,0.9]K
RE 4 7 [1.0,0.0]
R4 7 0 [300.0, 15.0]
Rbc 5 6 [1.0e8,0.0]
Rbe 5 4 [1.0e8,0.0]
Rce 64 [1l.0e8,0.0]
Q1654QNL
-op
.AC LIN 1100 100hz
.model QNL NPN(BF=[80,12] CCS=2PF TF=0.3NS TR=6NS CJE--3PF
+ CJC=2PF VA=[50,7.5])
.END

Figure 24ID. SFA input file for single-stage amplifier. See Fig-
ure 2-l1A for circuit diagram.
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Table 2-11. One-Stage Amplifier; DC Data Only

SAS

MO220AM 2.20 .22C0 St2P.7 -M =2W..VXA Pe1 A W=X A,2:32

2 -, 2 2
M (2 (0.< ) 0V (X.% 5 D2.70 - X) I0 U. 2 53 005207- I a MX)

Vtt O 0SX.'0 ASO .7SS11 14. M

7AC42 Z2.3OA 0: a. 7E: 0 0.;00 07005 31 2.S00 " 00 3 0 o: loc

Q-41M 002 14, 0 0 21 0 0 0 290

is 00 72.20 2200 00 0.2 .00: 20s 0200 00 0200 100220

00LW 0 0 2719 C C 0 C 00
0 . to0 0.0 I 00 0.20 0.00 0.40 0 20 0.00 0 -0 0 20 t00 20

OOC0EK 0 0 0 00 0 0 0 0 0 20
0 00 000 0.00 100,20 a025 0 00 00 00 022 0.00 !0070:

a a:30 0 0: 0 0 a 0 0: 0ot 0 0.: a 22a2 .0

0070 0 0a2 0 0 7: 200
0 cc 0 00 0 00 0 20 00 3 .0 0.00 4.00 0 20 37.00 000.00

X3-3=7 03 32 0 0 0 0 33 a 0 0 020
.7020 2020 0.20 000c 0.00 0.002 60.20 0.00 0230 0 00 too 20

a22 ~ 0 0 a 0c 200 0 0 2IN

0 20 0.00 0 20 a cc 0 cc 0 00 0 00 10.0 020 00 00C

a2 0 30 0 0 0 0 a c a 0 0 20to 0 0 000lo~c

0 20 0 00 0 20 0 00 0 20 !100 0 2.0 a 00 2C00 0o "0 000.70

77022 2 02 220 t00 070ll 202 2.0 202 2220

.02200'o 022 222 0t 70 2o 22 2 02 22 7 2

"02' 2 220 002 0 202 2 .72 2227 2 002 022 2 200 2.022 0002
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Table 2-1J. One-Stage Amplifier; AC and DC Data

0 -X1 - (X;2v t cvI I~l)-Ec-3D() u P-50(

YMB0I5 Of 005550000000 AN0 WMMT COASSIIE IN00TO ALSO.

FM0

fAULIt NOINAL 0301 02.01 RB051055 051 S05 01000 0.00050 0551351 X-0750 055 TOTAL

NOM0.3 too 0I 0

to0.30 00 0.00 00 0. 00 0.00 0.50 00 0 0 :0 00 00000

(Lot 1 10M 0 0 0 200
0.0 $1 .50 0.00 0.00 0.00 0 00 0.00 0.00 0. 00 0 00 100 00

00.01 00 0 200 0 0 0 0 a 0 200

00 0.00 10000 0.00 0 00 0.00 0.00 0 00 0.50 00 0 00.00

03C.010 0a 0 0 0 0 0 200o

0 00 0.00 00 D 000.00 0 00 0.00 0 00 0.00 0.00 0 00 10000

n.z *000 0 0 0 20 0 0 0 0 0 00

0.00 0.00 0.00 0.00 0000: a 000 00 000 0.00 0.00 10000

f150 0 0 0 200 0 0 0 0 200
0 00 0.00 0.00 0.00 0.00 to0000 0.00 0.00 0.00 0.00 000000

00 szm0 0 0 0a 0 0 0 200
2 00 0.00 0 00 0.00 0 00 0.00 400 0 00 0.00 0 00 I00 00

0550055 0 0 0 a a 0 0 200 0 00

0.00 a00 a 00 0.00 0.00 000: 0.00 1000:0 1 00 0.00 150 0

0-m 0 0 0 0 0 0 0 200 0 20
0.00 0.00 0 00 0.00 0.00 0.00 0 00 0 00 00.00 00 00000.

U01000 0 0 0 0 000 20

0.00 0.00 000C 0.00 0 00 a00 0 00 000o 0 00 01200 10000

TOTAL . 204 1::0 2 0 000 220 200 007 " o 200 050to 200
750520 10.20 a00 000 00 00 00 00.0 00 0000 a t 00 c00 150 00.00

00.21S 0.0000 0.000 0 0000 0.1000 a .000 0 0000 0 000 0 1000 0 1000 00
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2-1. Study of BJT Parameter Sensitivities

In order to arrive at efficient models that account for variations in the behavior of BJTs, we per-

formed a simple sensitivity analysis of a typical BJT's performance by varying key parameters in

the SPICE Gummel-Poon BJT model. Random variation in key parameters during simulation

would provide a nondeterministic model of the BJT that is used to build up the training sets for our

multivariate studies.

In constructing the model, we began with a representative NPN transistor described by the follow-

ing SPICE file:

BJT family of curves
.DC VCE 0 10.OV 0.2V IB 1OUA 5OUA 20UA
.print DC i(vic) i(vib) v(l)
ib 0 5
vib 1 5
Q4 3 1 0 QN2222
VIC 2 3
VCE 2 0
.MODEL QN2222 NPN(IS=I.9E-14 BF=150 VP=lOQ
+ IKF=.175 ISE=5E-II NE=2.5 BR=7.5 VAR=6.38
+ IKR=0.012 ISC=l.9E-13 NC=I.2 RC=.4 XTB=1.5
+ CJE=26PF TF=.5E-9 CJC=llPF TR=30E-9)
.END

The above file constructs the I-V characteristics of a BJT under forward collector-emitter bias. In

the sensitivity analysis, all QN2222 parameters specified in the above example were varied +20%;

the effect of this variation on the I-V characteristics was then observed. Table 2-1K summarizes

the parameter changes and their effect on the device operation. The table indicates that the param-

eters BF (forward bias beta) and NC (forward current emission coefficient) have much stronger

effects on collector current than the other parameters. These effects can be observed in Figure 2-

IE, where I-V characteristics have been plotted for nominal BF and NC values, and with these pa-

rameters increased by 20%. BF tends to vary the collector current at saturation, whereas NC ef-

fects collector current prior to saturation.

In view of the graphs of Figure 2-1E, it appears that a simple randomization of BF and NC will

provide a good representation of variability in a bipolar transistor under normal forward bias con-

ditions. The effect of beta variation holds even at much larger Vce values (exceeding IOV in this

case). Clearly other parameters would exhibit more sensitivities at higher Vce (such as the early

forward voltage VAF). However, changes in beta can easily mask such effects. Note that a drop
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in beta (to near zero) can also be used to emulate a "dying" or "dead" transistor; i.e., a transistor

without current gain. Of course, a faulty transistor can demonstrate any of a number of other char-

acteristics, such as shifts in leakage currents, resistance, etc.

We must emphasize that the above conclusion has no basis in physics, nor does it reflect the mul-
titude of process problems that can occur. However, from a circuit design and simulation point of
view, variation in BF and NC does appear to cover a wide range in transistor I-V characteristics

that will result in circuit performance variability.

Table 2-1K. Effect of Variation in Gummel-Poon BJT Model Parameters

Param Value Value Ic (mA) Ie (mA)
nominal +20% Vce=. lV Vce=.3V

nom +20% nom +20%

IS 1.9e-14 2.3e-14 1.5 1.7 3.7 3.7
BF 150 180 1.5 1.7 3.7 4.4 X
VAF 100 120 1.5 1.5 3.7 3.7
IKF .175 .210 1.5 1.5 3.7 3.7
ISE 5.0e-14 6.0e- 11 1.5 1.5 3.7 3.7
NE 2.5 3.0 1.5 1.5 3.7 3.9
BR 7.5 9.0 1.5 1.5 3.7 3.7
VAR 6.38 7.65 1.5 1.5 3.7 3.8
IKR 0.012 0.014 1.5 1.5 3.7 3.7
ISC 1.9e-13 2.3e-13 1.5 1.4 3.7 3.7
NC 1.2 1.4 1.5 2.5 3.7 3.7 X
XTB 1.5 1.8 1.5 1.5 3.7 3.7

The symbol X indicates a significant effect
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2.1L Application of Plackett-Burman Experimental Designs

In our implementation, we used a 28 run Plackett-Burman design to reduce the number of model

parameters from thirteen. The design layout is included in Figure 2-IF. In order to perform the

experiment, one simulation of the circuit is performed for each row of the design. The values of

the parameters are varied from the nominal by a fixed amount, in the direction indicated by the plus

and minus signs in the first 13 columns of Figure 2-IF. For example, 11 of the 13 parameters were

modified by 10%, and 2 variables were modified by 5%. In the first simulation run, the parameters

1, 3, 4, 5, 6, and 11 (parameters correspond to each row of Table 2-iJ) were modified by +10%

from the nominal, while the other parameters were decreased by 10% for parameters 2, 7, 8, 9, 10,

and by 5% for parameters 12 and 13. Each row of Figure 2-iF corresponds to a simulation with

parameters modified in a similar fashion.

The output of each simulation variable is recorded, in this case v1, v3 and v4 . For each variable,

the values are added and subtracted down each column according to the pluses and minuses in Fig-

ure 2-1F, and the result is squared. Thus, the column operation is performed 27 times for each of

the three voltage variables. For the first thirteen columns, this provides an estimate of the effect of

the 13 parameters. For the remaining 14 columns, this provides an estimate of the standard devi-

ation of the output variable. This result is compared to the estimate of the standard deviation of the

variable which is obtained by averaging the squares of the effects in the remaining 14 columns.

Specifically, a t-score is computed by dividing the (squared) effect of each parameter by the esti-

mate of the standard deviation. This t-score is compared to the critical value of the t distribution

with 14 degrees of freedom (14 d.f. because there are 14 estimates of the standard deviation).

This procss is repeated for each output variable. Table 2-IJ indicates the impact that each of the

thirteen parameters has on each of the three output variables. Entries marked with a (**) denote

high statistical significance (greater than 99%), while the (*) indicates marginally significant to

significant effects (greater than 90%). The critical one-tailed t-value for 14 degrees of freedom is

t(.90) = 1.345, while t(.99) = 2.624. Note that only a few parameters (in this case only R 1, R2, R3,

R5 and BFI) have highly significant impact on the simulation results, a few more (four) are mar-

ginally significant, and 4 parameters have no significant effect. Thus, by performing only 28 sim-
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ulation runs, it is possible to reduce the number of parameters to be varied in future explorations

of the simulation model from 13 to 9, and possibly down to 5. Of course, a larger number of pa-

rameters would require more simulations; therefore, the utility of the method may become ques-

tionable for larger circuits. In such cases, a closer look at dependencies between parameters, or on

common factors (e.g., temperature, process parameters, etc.) would become more instructive in de-

scribing circuit variability.

For greater assurance, it is possible to repeat the experiment using different values for the incre-

ment or decrement from the nominal parameter values. For example, a parameter could be varied

by 20% or 30%, rather than by the 10% used above. In the simulation model above, the outcomes

of these further indicated even fewer significant parameters.

Table 2-1. Results of Plackett-Burman
Experimental Screening for One-Stage Amplifier

Parameter VI V3 V4

R1 10% -10.23** 11.24** -12.25**

R210% 12.63** -12.08** 13.49**

R310% 1.076 5.534** 0.463

R510% -1.308 -4.647** -1.436*

RB110% 0.376 -0.956 1.131
RCI 10% 0.718 -1.400* 1.542*

RE110% -0.562 0.773 -1.365*

RSI10% -0.214 1.594* -0.925

BF110% -3.015** 2.231* -2.656**

BR M% -0.466 0.512 -1.318

IS110% 0.412 -0.477 0.437

VAFI5% -1.050 0.920 -0.394

VAR1 5% -0.744 1.981* -1.575*
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2-2. Differential Pair

2-2A. Discrimination Analysis

Figure 2-2A shows the differential pair circuit of our study, with the corresponding SFA file given

in Figure 2-2B. This circuit was drawn from the SPICE3C1 documentation, and has become a

popular simulator benchmark circuit. Transistors Q1 and Q2 make up the differential amplifier

itself, with Q3 and Q4 serving as a current source for the pair. The fault analysis concentrates on

transistor faults, the modeling of which should be self-explanatory from the circuit input file (Fig-

ure 2-2B). Note the use of SPICE subcircuit blocks in this example. Each subcircuit represents

each transistor and its associated fault simulation components. Although all of the transistors are

of the same type, separate subcircuit blocks must be supplied to account for the independent vari-

ability and faulting of each instance of the transistor in the circuit.

This example accounts for 8 fault types for each transistor. Given four transistors, we then have

4 times 8 or 32 fault classes, plus one additional class to represent nominal operation of the circuit.

20 or 200 points were generated for each fault class, with random gaussian perturbations in the cir-

cuit parameters (this results in a maximum total of 33 times 200, or 6600 points). Total computa-

tion time on a SUN 4/260 was about 2 hours. After a SAS DISCRIM run using 6 accessible DC

voltages, we obtained the results given in Table 2-2A (data columns 1 through 4).

For 200 runs/fault, a comparison of columns 1 and 2 confirms the danger of using , aining set data

for testing purposes (see Section 1.2B). Although the overall classification error only increases

from 18% to 24%, drastic changes in classification error for specific faults occurs (e.g., RBE3_-

SHORT, RC3_OPEN,RCE4_SHORT, RElOPEN). Likewise, the change in overall error in go-

ing from 200 to 20 points/fault is not very large; however, the change is greater for specific fault

cases.

Most of the classification failures can be explained by considering the operation of the transistors,

given the circuit's design. For example, all of the cases with transistor base resistances shorted

could not be readily distinguished from the nominal cases. This is reasonable, given the forward

bias of Q3 and Q4, which set the current through QI and Q2 of the differential pair. The high input

resistances connected to the bases of Q1 and Q2 would further obscure drops in the base resistances

of these devices. Likewise, shorting Q4's base and collector would have no effect since the design
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already calls for this (neglecting the relatively small series base and collector resistances). The am-

biguity between open-circuiting Q4's collector or emitter can be explained by the disruption of the

reference current through Rbias, which would result in similar effects on the DC voltages at the

nodes used in this analysis. Consequently, the faults RBOPEN and REOPEN constitute an am-

biguity set.

We extended the classification analysis by simply grouping all ambiguous classes with 200 points/

fault (i.e., classes with greater than 2% error classification rate) into one class named "NOTNOM-

INAL." Using this classification, along with that of the other fault classes, we reran the SAS DIS-

CRIM routine. Of the remaining fault classes except two, at least 98% of the Monte Carlo runs

for each fault class were properly classified (in fact, we had 100% correct classification in most of

the cases). Two fault classes, RB4_OPEN and RE4_OPEN, could not be distinguished from each

other. This seems reasonable, since both faults effectively suppress the current source formed by

the Q3-Q4 pair. In summary, once ambiguity sets are grouped, some degree of classification can

be performed using a discrimination analysis.

2.2B. Note on the Assumption of Normality

The SAS DISCRIM analysis (see Part 1, Section 1.2B) assumes that the data in each class has nor-

mal variation. However, in view of the nonlinearities of the circuit simulation, no' to mention data

obtained from real IC fabrication lines, the assumption of normality does not hold true (although,

in many cases, it may be a reasonable approximation). To avoid the assumption of normality, we

have applied the SAS NEIGHBOR routine to the data of the differential pair. NEIGHBOR is a

non-parametric discriminator that classifies objects into groups according to the k-nearest-neigh-

bor rule (Section 1.5D). In our use of the command, a fault class for a given test voltage set was

identified by determining the dominant class among the 33 nearest points to each test point. The

value of"33 nearest neighbors" was chosen on an ad hoc basis since there are 33 fault classes. As

the last two columns of Table 2-2A indicate, the classification power is very slightly degraded

when using the nearest k neighbor method (compare columns 2 and 6). Another observation is that

there is not much difference between the individual class or overall results when the original train-

ing set or new test data are used. Nevertheless, Table 2-2A points to the usefulness of a nonpara-

metric method in performing classification. As mentioned in Part 1, however, such methods likely

will require more computation time. (In fact, this is why the nearest k neighbor method was only

applied with 20 samples/fault; 200 samples/fault would have required close to 24 hours of compu-

tation time on a MicroVax II, compared to about 20 min. for the discrimination analysis.)
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Table 2-2A. Differential Pair Fault Classification Results
(all values expressed as % error)

200 points/fault 20 points/fault

Fault Type Discrim Discrim Discrim Discrim Nearest Nearest
Analysis Analysis Analysis Analysis Neighbor Neighbor

Training Set Data New Test Data Training Set Data New Test Data Training Set Data New Test Data

Nominal 73 96 70 85 95 90

QlLOW 0 0 0 0 0 0
Q2._LOW 0 0 0 0 0 0
Q3LOW 18 0.5 0 5 0 5
Q4_LOW 18 13 15 35 10 30

RBI_1OPEN 0 9 0 0 20 30
RBISHORT 69 79 45 60 55 60
RB2.OPEN 0 5 0 0 30 30
RB2._SHORT 54 74 50 95 85 85
RB3_OPEN 18 0 15 20 0 0
RB3_SHORT 61 46 55 50 85 75
RB4_OPEN 44 61 15 50 10 5
RB4_SHORT 42 45 50 70 60 55

RBCISHORT 2 9 5 25 10 5
RBC2_SHORT 4 12 0 0 5 0
RBC3 SHORT 0 0 0 0 0 0
RBC4_SHORT 91 98 45 80 80 80

RBEISHORT 0 0 0 0 0 0
RBE2_SHORT 0 0 0 0 0 0
RBE3_SHORT 1 61 0 0 0 0
RBE4_SHORT 0 39 0 0 35 35

RCIOPEN 0 0 0 0 0 0
RC2OPEN 0 0 0 0 0 0
RC3_OPEN 0 38 0 0 45 40
RC4-OPEN 0 0 0 0 0 0

RCEISHORT 0 10 0 0 30 25
RCE27SHORT 0 9 0 0 10 15
RCE3_SHORT 0 0 0 0 0 0
RCE4_SHORT 83 0 0 0 0 0

RE1 OPEN 0 24 0 0 10 15
RE2 OPEN 0 18 0 0 5 35
RE3_OPEN 5 0 95 90 0 0
RE4_OPEN 27 33 50 40 75 70

Total APER 18 23 15 21 23 24
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+12 VT
Rcl1 I Rc2

V3 , V1 I Rioad

R sl" 
6

01 v 0 0  2 Rbias

03 V7  4

-12 V

Figure 2-2A. Differential pair circuit. The SFA file is shown in Figure 2-2B (next page).
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Differential Pair wI active current source SUBCKT QT2 1 2 3
* Nominal circuit: RB2 2 12 (100.0,0)
#GOOD 200 RC2 1 11 [1.0,0]
* RE2 3 13 [1.J,0]

* Q1 faults: RBC2 11 12 (10000.0,01K
#RBI 1.0e6 200 RB1 open RBE2 12 13 [10000.0,0]K
#RBI 1.0 200 RB1short RCE2 11 13 (10000.0,0]K
#RCI 1.0e6 200 Rdl open Q2 11 12 13 QNL2
#RE1 1.0e6 200 REl_open * Q2 1 2 3 QNL2
#RBCI 0.01 200 RBC1 short .MODEL QNL2 NPN (BF=[80,12] CCS=2PF
#RBEl 0.01 200 RBEl-short + TF=0.3NS TR=6NS CJE=3PF
#RCEl 0.01 200 RCE1-short + CJC=2PF VA=[50,8])
#QNL1 10 200 Qllow BF .ENDS QT2

* Q2 faults: .SUBCKT QT3 1 2 3

#RB2 1.0e6 200 RB2_open RB3 2 12 (100.0,0)
#RB2 1.0 200 RB2_short RC3 1 11 [1.0,0]
#RC2 1.0e6 200 RC2 open RE3 3 13 (1.0,0]
#RE2 1.0e6 200 RE2 open RBC3 11 12 (10000.0,01K
#RBC2 0.01 200 RBC2 -short RBE3 12 13 (10000.0,0]K
#RBE2 0.01 200 RBE2-short RCE3 11 13 (10000.0,0]K
#RCE2 0.01 200 RCE2-short Q3 11 12 13 QNL3
#QNL2 10 200 Q2_low BF * Q3 1 2 3 QNL3
* .MODEL QNL3 NPN (BF=[80,12] CCS=2PF
* Q3 faults; + TF=0.3NS TR=6NS CJE=3PF

#RB3 1.0e6 200 RB3_open + CJC=2PF VA=(50,8])
#RB3 1.0 200 RB3 short .ENDS QT3
#.C3 1.0e6 200 RC3 open ,
#RE3 1.0e6 200 RE3_open .SUBCKT QT4 1 2 3
#RBC3 0.01 200 RBC3 short RB4 2 12 (100.0,0]
#RBE3 0.01 200 RBE3"short RC4 1 11 (1.0,0]
#RCE3 0.01 200 RCE3-short RE4 3 13 (1.0,0]
#QNL3 10 200 Q3_low BF RBC4 11 12 (10000.0,01K
* RBE4 12 13 (10000.0,01K
* Q4 faults: RCE4 11 13 (10000.0,0]K
#RB4 1.0e6 200 RB4_open Q4 11 12 13 QNL4
#RB4 1.0 200 RB4 short * Q4 1 2 3 QNL4
#RC4 1.0e6 200 RC4 open .MODEL QNL4 NPN (BF-[80,121 CCS=2PF
#RE4 1.0e6 200 RE4 open + TF-0.3NS TR=6NS CJE-3PF
#RBC4 0.01 200 RBC4 short + CJC=2PF VA-(50,81)
#RBE4 0.01 200 RBE4-short .ENDS QT4
#RCE4 0.01 200 RCE4-short ,
#QNL4 10 200 Q4_low BF * Main Circuit:
* * .DC VIN -0.25 .25 0.005

%dc 1 2 3 6 7 10 .op
* RCI 3 4 (10,.51K

.SUBCKT QT1 1 2 3 XQ2 1 6 10 QT2
RBl 2 12 (100.0,0] XQ1 3 2 10 QT1
RCI 1 11 [1.0,0) RC2 1 4 (10,.5]K
RE1 3 13 (1.0,0] RBIAS 4 7 (20,1]K
RBCl 11 12 (10000.0,0]K VCC 4 0 12
RBEl 12 13 (10000.0,0]K VIN 5 0 0.0
RCE1 11 13 [10000.0,0]K VEE 8 0 -12.0
Q1 11 12 13 QNL1 XQ3 10 7 8 QT3
* Q1 1 2 3 QNL1 XQ4 7 7 8 QT4
.MODEL QNLI NPN (BF-(80,12] CCS=2PF R5 6 0 [1,.05]K
+TF-0.3NS TR-6NS CJE-3PF CJC=2PF VA-(50,8]) RS1 5 2 [1,.05]K
.ENDS QT1 .END

Figure 2-28. SFA Input file for differential pani circuit.
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2.3. Operational Amplifier -- Go/No-Go Testing

2.3A. Circuit Description

The simulation of an operational amplifier proved to be a severe challenge for this study. To con-

serve computation time, we chose to use a nonlinear behavioral model for an op-amp, rather than

a full transistor-level model. Figure2-3A shows the model used.

The model of Figure 2-3A is based on the work published by Boyle et. al. [1]. This model (with

variations) appears in several references, including the Raytheon RLA guide [14] and the Intusoft

SPICE guide [17]. The Intusoft version, which corresponds to a UA741, has been adapted for this

study. It accounts for the real circuit's behavior at its input by use of the differential pair made up

of Q1 and Q2. Current sources GA and GCM model the differential and common mode gain, re-

spectively, of the device. Current source GB represents the gain of an intermediate stage in the

real circuit, while transistors Q4 and Q5 with diodes D6 and D7 model the output stage. Diodes

D2 and D3 model current limiting, while diodes D4 and D5 model voltage limiting.

" *- a . .'~ Oi Oa,,

Figure 2-3A. Behavioral model of op-amp used in this study (based on ref.l,14 and 17).
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R2 (4 K)

R1 (1K)

Gain =

Figure 2-3B. Inverting amplifier configuration. The op-amp is represented by the behavioral
model of Figure 2-3A.

The model of Figure 2-3A, and its variants (including that described in the Boyle et. al. reference

[1] and in the RLA guide [14]) proved difficult to simulate. For example, Berkeley SPICE3CI,

IG-SPICE (2G6) and Pspice (2G6) either had problems converging during the DC operating point

analysis, or produced radically different answers without any warnings! These problems occurred

regardless of the setting of the SPICE OPTIONS parameters, in particular the ITL1 (for iteration

count) and 1TL6 (for source stepping) parameters. Likewise, setting initial conditions (using

NODESET) had no effect. In the end, the model of Figure 2-3A was chosen with the diodes D4

and D5, as well as the voltage sources EP and EN removed. This does not pose a severe limitation

for our analysis since voltage limiting does not enter into the faults studied. Nevertheless, even

this reduced configuration led to occasional convergence problems during the Monte Carlo runs.

The model was placed in a simple inverting amplifier configuration, as shown in Figure 2-3B. The

gain of this circuit was set to -4 using the indicated combination of R1 and R2. An arbitrarily sta-

tistical model of the "nominal" cp-amp was generated by varying the component parameters of the

behavioral model by + 5%. We do not claim that this represents the true statistical variation of

any op-amp production run; rather, the procedure simply provides nominal variation for the pur-
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poses of our study. Ten faults were arbitrarily introduced within and outside the op-amp (refer to

Figure 2-3C for the SFA input file). Note that the analysis covered the DC voltages at nodes 2 and

6, -,s well as the complex AC voltages at these nodes for four frequencies between 10 Hz and

100KHz. Thus, a total of 18 values were obtained for each Monte Carlo iteration. Two hundred

Monte Carlo iterations were performed for the nominal runs, while only one random iteration was

performed for each of the 10 fault types.

Two methods were used to detect circuit failure during Go/No-Go testing. The first method made

use of the SAS DISCRIM routine where all nominal runs were grouped into one class, and all faults

were grouped into another, but single, class. The second method made use of multivariate hypoth-

esis testing.

2.3B. Fault Analysis

2-Class Discrimination:

In this method, all 11 fault types were grouped into one class, then the discriminator was trained

(by running DISCRIM) using the nominal and faulted data as the two classes. Reapplying the

training set data for testing the discriminator, the following results were obtained:

Using "within class" covariance matrices (@ 99% threshold); all 18 variables:

nominal: all 200 nominal runs properly classified.
faults: 8 classified as faulted; 3 misclassified as nominal.

Using "pooled" covariance matrices; all 18 variables:

nominal: all 200 nominal runs properly classified.
:'aults: 6 classified as faulted; 5 misclassified as nominal.

Using only the 2 DC variables (at V2 and V6); 99% threshold:

nominal: 97% of 200 nominal properly classified;
faults: 4 faults properly classified; 7 misclassified

We see that exclusion of the AC data degrades the fault classification. Nevertheless, many of the

faults in these simulations could not be distinguished from the nominal runs. Note that some (if

not all) of the misclassification of the nominal runs in the DC-only test was due to the presence of

outliers that resulted from SPICE convergence errors.
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Multivariate Hypothesis Test:

This procedure makes use of the methodology described in Section 1.3. For the present example,

the following procedure was followed:

1) SAS stepwise discrimination STEPDISC routine first eliminated variables (i.e., voltages)

that did not aid in the separation of the nominal run class from the fault class defined by

grouping all faults into one fault class. For the current problem, 5 voltages remained at a

significance level of 0.05 (see the SAS manual).

2) The data were transferred to the an IBM-compatible PC. The program MathCAD [21] was

used to compute the means and covariance matrix for the nominal case.

3) Using MathCAD, eq. 1-12 was computed for each fault.

4) The result was compared with the chi-square value for 5 degrees of freedom (corresponding

to 5 voltages). At an a of 0.05, this is 11.07.

Following the above procedure, 4 of the 11 faults incorrectly passed the test (i.e., were incorrectly

identified as "good"). A random sample of 11 nominal points was also tested. All of these points

were correctly classified as nominal.

After we removed the outliers from the complete set of nominal runs (there were 7 outliers, all pre-

sumably due to SPICE convergence errors), we tested all the remaining nominal points. 182 out

of 193 nominal points (94%) were correctly classified. Re-running the hypothesis testing on the

faults, 8 out of 11 faults were correctly classified as "not nominal." Tht remaining three faults

could not be distinguished from the nominal runs. Note that this result is identical to the DISCRIM

analysis where the within-class covariances were used (discussed above).

Although DISCRIM may provide a quick and easy method for performing multivariate Go/No-Go

testing, it is also dangerous in this application. During training for the collective fault class, a

collection of faults may arise that have an effective mean almost identical to that of the nominal

runs (i.e., the centroids of the two classes are the same.) In this case, the two classes become dif-

ficult to distinguish. We therefore would recommend the multivariate hypothesis testing with the

straight-forward use of eq. 1-12.

66 Part 2. Examples



Figure 2-3C. SFA input file for inverting amplifi-
er using nonlinear op-amp behavioral model.

.SUBCKT UA741 2 3 6 7 4
* (-) (+) OUT V+ V-

QNIl 10 2 13 QNIl
QNI2 12 3 13 QNI2
.MODEL QNIl NPN (NF=l.5 BF=[111.0,10.0]
* IS=8E-16 CJE=3PF)

.MODEL QNI2 NPN (NF=1.5 BF=[144.0,10.0)
* IS=8.3E-16 CJE=3PF)
Q3 13 14 4 QN741
IEE 4 14 185NA

741 OP AMP Macro Model CCM 13 4 2.5PF
* Based Boyle et. al.and Intusoft models RCM 13 4 10MEG
* Voltage saturation diodes removed RC1 11 10 (1.0,0.05]K
* to eliminate convergence problems RC2 11 12 (1.0,0.05]K
* B. Epstein 6/90 CHF 10 12 55PF
* Nominal circuit: Dl 7 11 D741
#GOOD 200 RP 7 4 (10.0,0.5]K
* GA 0 15 12 10 (0.9,0.05]MMHO
* Arbitrary faults: GCM 0 15 13 0 (6.3,0.03]NMHO
#QNIl 10 1 QNIIlow BF R2 15 0 1100.0,5.0]K
#QNI2 10 1 QNI2_low BF D2 15 0 D741 OFF
#RCI 1000.0 1 RClopen D3 0 15 D741 OFF
#RC2 1000.0 1 RC2 open C2 15 16 30PF
#RP 0.01 1 RP low GB 16 0 15 0 (12.5,1.0]
#R2 0.01 1 R2 low * D4 16 37 D741
#QPO 10.0 1 QPO_low BF * D5 34 16 D741
#R02 20.0 1 R02 low * RDD4 37 16 10K
#R1M 0.001 1 Rlm short * RDD5 34 16 10K
#R2M 0.001 1 R2m-short * VCP 37 0 13.0
#R2M 1000.0 1 R2mopen * VCN 34 0 -13.0
* R02 16 0 (1000.0,50.0]
%dc 2 6 D6 19 16 D741 OFF
%ac 2 6 D7 16 20 D741 OFF

IRO 20 19 [170.0,8.0]UA
RRO 16 21 1MEG
Q4 7 19 21 QNO
Q5 4 20 21 QPO
.MODEL ONO NPN (BF=(150.0,7.5] IS=lE-14)
.MODEL QPO NPN (BF=(150.0,7.5] IS=lE-14)
Ll 21 6 30UH
RLI 21 6 [1.0,0.05]K
.MODEL D741 D (CJO-3PF)
.MODEL QN741 NPN (IS=8E-16)
.ENDS
* Main circuit:
RiM 1 2 (1.0,0.05]k
R2M 2 6 (4.0,0.2]k
VIN 1 0 %C 2 AC 0.5
VP 7 0 15V
VN 4 0 -15V
Xl 2 0 6 7 4 UA741
.op
.AC LIN 2 10 100K
.OPTIONS ITL1500 ITL6=2
.end
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2.4. Elliptical Filter

2.4A. Circuit Description

To further investigate Go/No-Go testing, we applied the above techniques to a larger circuit repre-

senting a fifth-order elliptical filter. This circuit was from the Intusoft SPICE manual, and makes

use of a linearized version of the op-amp circuit in Figure 2-3A. The filter has three op-amps (see

Figure 2-4A). An important characteristic of the circuit is its rapid gain roll-off at about 1 kHz.

Variations in this roll-off help to discriminate faults.

Figure 2-4B shows the SFA input file for this example. Three nodes were selected for both DC

and AC measurements at 5 frequencies ranging from 1 kHz to 5 kHz. Thus, a total of 33 voltages

(3 DC + 2 X 15 -- don't forget real and imaginary parts) were obtained for each nominal iteration

and fault. Random variation in each of the op-amps' component parameters (std. dv. 5%, normal),

as well as nominal 5% variation in the interconnecting component parameters, defined the nominal

statistics of the overall circuit. 22 arbitrary catastrophic faults were then introduced to the circuit

components that interconnected the op-amps (see the list at the beginning of the SFA file in Figure

2-4B). Note that the capacitors were "shorted" by use of the resistor in parallel with each capac-

itor.

2.4B. Fault Analysis

Once again, we used the two methods discussed in the previous section for performing Go/No-go

testing.

2-Class Discrimination:

Using only 2 DC voltages, no nominal cases were properly c'assified as nominal. However, using

all 33 variables, 98% of the nominal cases were properly classified as nominal. None of the faulted

cases were classified as nominal; i.e., all 22 faults were properly classified as faults!
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Multivariate Hypothesis Test:

Following the procedure described above, the original 33 variables were reduced to 25 variables

through the SAS STEPDISC procedure, then we computed the covariance matrix of the nominal

runs. All 22 faults were correctly recognized as faults. Likewise, a sample of 40 random nominals

was completely classified as nominal.

Full Discrimination:

We investigated a straight forward discrimination analysis, where each of the 22 fault types and

the nominal cases represented a total of 23 classes. Applying the SAS DISCRIM routine to 20

Monte Carlo iterations for each of the 22 fault classes, along with 200 iterations for the nominal

class, resulted in 100% accurate classification of all 22 fault classes (the training set data was used

for the test). In other words, the discriminator was able to detect and classify all 22 faults with

100% accuracy! 98% of all nominal runs were classified as nominal.

The elliptical filter yielded quite impressive screening results, especially in view of the circuit's

size and complexity. The success of the hypothesis testing and discrimination analysis is likely

due to the strong dependence of the circuit's frequency roll-off on component values. This points

to the importance of a good test strategy when performing Go/No-go testing and fault classifica-

tion.
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Linear 5th order elliptical filter .SUBCKT X2UA741 2 3 6 7 4
* (from Intusoft) * IN + OUT VCC VEE
#GOOD 200 RP 4 7 [10.0,0.51K
#CMl 0.001 1 Cl low RXX 4 0 [10.0,0.5]MEG
#RF1 0.1 1 Cl sKort IBP 3 0 [80.0,4.0]NA
#CM2 0.001 1 C2 low RIP 3 0 [10.0,0.5]MEG
#RF2 0.1 1 C2 siort CIP 3 0 (1.4,0.07]PF
#CM3 0.001 1 3 low IBN 2 0 [100.0,5.0]NA
#RF3 0.1 1 C3 sKort RIN 2 0 [10.0,0.5]MEG
#CM4 0.001 1 04 low CIN 2 0 (1.4,0.07)PF
#RF4 0.1 1 C4 short VOFST 2 10 [1.0,0.05]MV
#CM5 0.001 1 E5 low RID 10 3 [200.0,10.0]K
#RF5 0.1 1 C6 short EA 11 0 10 3 1
#CM6 0.001 1 E7 low Ri 11 12 (5.0, .25]K
#RF6 0.1 1 C7 short R2 12 13 (50,2.5]K
#CM7 0.001 1 E8 low Cl 12 0 [13.0,.65]PF
#RF7 0.1 1 C8 short GA 0 14 0 13 (2700.0,135]
#RM25 0.01 1 R25 low C2 13 14 (2.7, .14]PF
#RM25 10000.0 1 R25 hi RO 14 0 (75.0,3.75]
#RM3 0.01 1 R3 low L 14 6 [30.0,1.5]UHY
#RM3 10000.0 1R3_hi RL 14 6 (1000,50.0]
#RM8 0.01 1 R8 low CL 6 0 [3.0,.15]PF
#RM8 10000.0 1 R8 hi .ENDS X2UA741
#RM12 0.01 1 R12 low *
#RM12 10000.0 1 R12 hi .SUBCKT X3UA741 2 3 6 7 4
* * -IN + OUT VCC VEE
%POLAR RP 4 7 [10.0,0.5]K
%dc 3 9 15 RXX 4 0 [10.0,0.5]MEG
%ac 3 9 15 IBP 3 0 [80.0,4.0]NA
* RIP 3 0 [10.0,0.5]MEG
.SUBCKT XlUA741 2 3 6 7 4 CIP 3 0 (1.4,0.07]PF
* - IN + OUT VCC VEE IBN 2 0 [100.0,5.0]NA
RP 4 7 [10.0,0.51K RIN 2 0 [10.0,0.5]MEG
RXX 4 0 [10.0,0.5]MEG CIN 2 0 [1.4,0.07]PF
IBP 3 0 [80.0,4.0]NA VOFST 2 10 [1.0,0.05JMV
RIP 3 0 [10.0,0.5]MEG RID 10 3 [200.0,10.0]K
CIP 3 0 [1.4,0.07]PF EA 11 0 10 3 1
IBN 2 0 (100.0,5.0]NA Ri 11 12 [5.0,.25]K
RIN 2 0 [10.0,0.5]MEG R2 12 13 [50,2.51K
CIN 2 0 (1.4,0.07]PF Cl 12 0 [13.0,.651PF
VOFST 2 10 [1.0,0.05]MV GA 0 14 0 13 (2700.0,135]
RID 10 3 [200.0,10.0)K C2 13 14 (2.7,.14]PF
EA 11 0 10 3 1 RO 14 0 (75.0,3.75]
Ri 11 12 [5.0,.251K L 14 6 [30.0,1.5]UHY
R2 12 13 [50,2.51K RL 14 6 (1000,50.0]
Cl 12 0 [13.0,.65]PF CL 6 0 [3.0,.15]PF
GA 0 14 0 13 (2700.0,135] .ENDS X3UA741
C2 13 14 (2.7,.14]PF *
RO 14 0 (75.0,3.75]
L 14 6 (30.0,1.5]UHY
RL 14 6 (1000,50.0]
CL 6 0 [3.0,.15]PF
.ENDS XIUA741

Figure 2-4B. SFA input for elliptical filter.
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* Capacitor block:

.SUBCKT CNET 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CM1 1 2 (2.6667,.13)NF
CM2 3 4 [2.6667, .13]NF
CM3 5 6 (2.6667,.13)NF
CM4 7 8 [2.6667,.13]NF
CM5 9 10 (2.6667,.13]NF
CM6 11 12 [2.6667,.13]NF
CM7 13 14 [2.6667,.13]NF
.ENDS CNET
* Capacitor fault block:
.SUBCKT RNET 1 2 3 4 5 6 7 8 9 10 11 12 13 14
RFI 1 2 [1.0e8,0.0]
RF2 3 4 [1.0e8,0.0)
RF3 5 6 [1.0e8,0.0]
RF4 7 8 [I.0e8,0.0)
RF5 9 10 [1.0e8,0.0]
RF6 11 12 [l.0e8,0.0)
RF7 13 14 (l.0e8,0.0]
.ENDS RNET
*

* MAIN CIRCUIT

Xl 2 0 3 77 44 XlUA741
RM25 1 2 (19.6,1.0)K
RM22 2 3 [196.0,9.8]K
X2 9 7 9 77 44 X2UA741
RM3 3 5 [147.0,7.4]K
RM4 5 7 [154.0,7.7]K
RM6 3 10 [I.0,0.05]K
RM7 10 0 [71.5,3.6]
RM8 6 8 (37.4,1.9]K
X3 15 14 15 77 44 X3UA741
RM12 9 11 (110.0,5.0]K
RM13 11 14 [110.0,5.0]K
RM9 9 8 [260.0,13,0]
RMIO 8 4 [740,37.0]
RM14 12 13 [27.4,1.4]K
RM16 15 13 [40.0,2.0)
RM11 4 0 (402.0,20.0]
RM15 13 0 [960.0,48.0]
V2 44 0 -15
V3 77 0 15
X4 2 3 10 6 5 8 6 7 4 12 13 11 12 14 CNET
X5 2 3 10 6 5 8 6 7 4 12 13 11 12 14 RNET
VIN 1 0 AC 1 DC 1
.op
.AC LIN 3 1K 5K
.print DC V(1) V(3) V(5) V(7)
.print AC VM(1) VM(3) VM(5) VM(7)
.END

Figure 2-4B. SFA input for elliptical filter (continued).
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2.5. Comparator Circuit

2.5A. Circuit description

A simple comparator circuit was simulated using SPICE in the SFA system. The circuit is shown

in Figure 2-5A[2]. The configuration of the circuit is that of an inverting comparator with built-

in hysteresis. As the input voltage (Ein) is ramped up, the comparator swings into negative satu-

ration. However, during the downward ramp, positive saturation is attained.

The SFA input file is given in Figure 2-5B. The full 741 Op Amp circuit transistor-level SPICE

description was used for the simulations (Figures 2-5B and 2-5C). Even though this model has

23 transistors, the simulations had better convergence properties than the simpler macromodels

used in our previous examples. Figure 2-5D shows the response of the output of the comparator

as the input voltage is ramped up from -15 V to +15 V, then down from +15 V to -15V. As ex-

pected, saturation occurs at about -15 V and +15V, which are the supply voltages to the op-amp.

The analysis was performed using SPICE's DC computation mode (not transient analysis). The

dependent voltage source controlled the direction of the ramp (examine the input file of Figure 2-

5B).

Ein Rln (10K)

V3  6

- RM (20K) Rf (20K)

Figure 2-5A. Noninverting comparator with hysteresis. A zero reference voltage is applied
to resistor RM by grounding this resistor.
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Comparator using full 741 op amp circuit

* B. Epstein 7/90

#GOOD 200
#Rin 10000.0 100 Rin OPEN
#Rin 0.0001 100 Rin _OW
#RM1 200000.0 100 Ri OPEN
#RM1 0.0001 100 Ri LOW
#Rf 200000.0 100 RF OPEN
#Rf 0.0001 100 RF'_LOW
%dc 6

.SUBCKT UA741 1 2 24 27 26
* (-) (+) OUT V+ V-
Ri 10 26 (1.0,.051K
R2 9 26 (50.0,2.51K
R3 11 26 [1.0,0.051K
R4 12 26 [3.0,0.15]K
R5 15 17 [39.0,2.0]K
R6 21 20 [40.0,2.01K
R7 14 26 [50.0,2.53K
R8 18 26 [50.0,2.5)
R9 24 25 [25.0,1.25)
RI0 23 24 [50.0,2.0)
RII 13 26 [50.0,2.0]K
COMP 22 8 30PF
Q1 3 2 4 QNL
Q2 3 1 5 QNL
Q3 7 6 4 QPL
Q4 8 6 5 QPL
Q5 7 9 10 QNL
Q6 8 9 11 QNL
Q7 27 7 9 QNL
Q8 6 15 12 QNL
Q9 15 15 26 QNL
Q10 3 3 27 QPL
Qll 6 3 27 QPL
Q12 17 17 27 QPL
Q13 8 13 26 QNL
Q14 22 17 27 QPL
QI5 22 22 21 QNL
Q16 22 21 20 QNL
Q17 13 13 26 QNL
Q18 27 8 14 QNL
Q19 20 14 18 QNL
Q20 22 23 24 QNL
Q21 13 25 24 QPL
Q22 27 22 23 QNL
Q23 26 20 25 QPL
.MODEL QNL NPN(BF=[80.0,8.0] RB=[100.0,5.0] CCS=2PF TF=0.2NS TR=6NS CJE=3PF
+ CJC=2PF VA=[50.0,5.0])
.MODEL QPL PNP(BF=[10.0,1.0] RB=[20.0,1.0] TF=1NS TR=20NS CJE=6PF CJC=4PF
+ VA=[50.0,5.0])
.ENDS
.

* MAIN CIRCUIT

VCC 7 0 15.0
VEE 4 0 -15.0
VIN 22 0 DC
BI 12 0 V=15.0 - 2.0*abs(v(22))
Rin 12 2 [10.0,.53K
RMI 3 0 (20.0,1.0]K
Rf 3 6 (20.0,1.0]K
Xl 2 3 6 7 4 UA741
.dc VIN -15.0 15.0 1.0
.END

Figure 2-5B. Comparator circuit.
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Figure 2-5C. UA741 Op-amp circuit (from ref. 4).
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Figure 2-5D. Response of comparator circuit when input from -15 V to + 15V and back to -15
V is applied as shown in Figure 2-5A.

76 Part 2. Examples



output voltage

input voltage

........ .. ... ...j .. .................. :.................................

Figure 2-SE. Probabilistic response of the comparator when components have nominal variation.

2.5B. Analysis

The circuit of Figure 2-5A was sent to the SFA. Two-hundred "nominal" Monte Carlo runs were

performed, along with 100 Monte Carlo runs representing each of the fault cases arising from the
"opening" and "shorting" of resistors R1, Rf, and Rin. Data collected were the output voltages from

the comparator (node 6) resulting from the input voltage ramping. For each Monte Carlo run, a

full input ramp was performed (resulting in 30 output voltages per run). This should result in a

"cloudy" hysteresis loop when the results of all nominal runs are plotted (Figure 2-5E). When

faults occur, the switching points in the loops presumably should shift.

Using the SAS STEPDISC procedure, voltages that do not contribute to the discrimination power

of the discrimination analysis (following Wilk's Lambda tests of Section 1.5C) were eliminated.

Of the original thirty input voltages for each run, all but 12 voltages were eliminated. Those that

were kept reflected the shifting of the switch points in the hysteresis curve.

The results from 100 test runs for each of the seven fault class were then applie! in the discrimi-
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nation and hypothesis tests. The discrimination analysis yielded the following results:

Nominal 100% correct classification
R1 open 3% misclassified as nominal
Rf open 2% misclassified as nominal
Rin open 12% misclassified as nominal
others 100% correctly classified

The hypothesis test (eq. 1-12) results for the comparator are as follows:

Nominal 94% classified as "good"
Faults 100% correctly rejected as "bad"

In summary, almost all of the nominal circuits were classified as "good." This means that assum-

ing production runs of the comparator were identical to the simulation results, few "good" circuits

would be mistakenly rejected as being "bad." However, a few per cent of "bad" circuits would be

erroneously passed as "good" following the discrimination analysis. The severe incorrect accep-

tance of the "Rin open" fault cases is to be expected, given the high input impedance of the op-

amp. If the voltage drop across this device were measured, this classification error would likely

be eliminated.
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2.6. Logarithmic Amplifier

2.6A. Circuit Description

Figure 2-6A describes the circuit of this part of our study. The configuration is that of a log ratio

operator [3]. When two voltages, v1 and v2 , are applied to the circuit, the output is given by the

transfer function:

=O -Kiln (2
VK2v

with

R1 +R 2 kT
K1(= R2  q

and
R3

For the usual log operator function, v2 is typically held constant at some reference voltage. In our

simulations, we fixed this value at +15 V (which could be conveniently drawn from the supply).

An important advantage of this circuit over the simpler one op-amp / one-transistor log amplifier

circuit is that it is more tolerant to temperature drift of ,he components. Further temperature com-

pensation is provided by resistor R2 , this component being temperature compensated. Figure 2-

6B shows the result of a SPICE simulation, where the input v1 was ramped from 0.01 to 10 V. The

presence of the exponential function in the dependent voltage source of the SFA/SPICE deck (see

Figure 2-6C) enables SPICE's DC routine to ramp with an exponentially increasing input voltage

over three decades. Note that highly linear logarithmic response over the 3-decade range of the

simulations (which used the linearized 741 op-amp model).

2.6B Analysis

Two hundred nominal Monte Carlo runs were performed, followed by 10 runs for each fault class,

which were defined by opening and shorting all of the transistor resistances and component resis-

tors in the circuit. All runs consisted of ramping the input voltage exponentially from 0.01 to 10

V. Voltages at nodes 2, 6, and 8 were recorded (resulting in a total of 90 points per run). Each
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Figure 2-6A4. Log-ratio operator circuit.
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Figure 2-6B. SPICE response of the log-ratio amplifier. An input voltage ranging from 0.01 to 10
V was applied to v1.
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Log-ratio circuit *
* B. Epstein 7/90 .SUBCKT QLOG2 1 2 3
#GOOD 200 Q2 11 12 13 QNL2
#RB1 1.0 10 RB1 SH RC2 1 11 [0.1,0.0]
#RC1 10000.0 10-RC1 OP RB2 2 12 [100.0,0.0]
#RE1 10000.0 10 REI--3P RE2 3 13 [0.1,0.0]
#RBEI 0.01 10 RBE1 S' RBE2 12 13 [10000.0,0.0]K
#RCE1 0.01 10 RCE1-SH RCE2 11 13 [10000.0,0.0]K
#RBC1 0.0001 10 RBC1 SH RBC2 11 12 [1000.0,0.0]MEG
#QNL1 1.0 10 Q1 LOW BF .MODEL QNL2 NPN (BF=[80..0,8.0]
#RB2 1.0 10 RB2-SH + CCS=2PF TF=0.2NS TR=6NS CJE=3PF
#RC2 10000.0 10-RC2OP + CJC=2PF VA=[50.0,5.0])
#RE2 10000.0 10 RE2-OP .ENDS QLOG2
#RBE2 0.01 10 RBE2 SH *
#RCE2 0.01 10 RCE2 SH * MAIN CIRCUIT
#RBC2 0.0001 10 RBC2 SH VCC 7 0 15.0
#QNL2 1.0 10 Q2 LOW BEF VEE 4 0 -15.0
#RM5 100000.0 10 R5 OP VlIN 25 0 DC
#RM6 100000.0 10 R6OP Bi 20 0 V=exp(V(25)/0.433)
#RM2 0.01 10 R2 SH V2IN 21 0 15.0
#RM2 100000.0 10 R2 OP RM5 20 2 [10.0,0.5]K
#RM7 0.0001 10 R7 SH RM6 3 0 [10.0,0.5]K
#RM3 0.0001 10 R3-SH XQ1 2 0 10 QLOGI
#RMI 0.001 10 R1 S-§H XQ2 11 8 10 QLOG2
#RM1 100000.0 10-RI OP RM2 8 0 [1.0,0.05]K
#RM4 0.001 10 R4 Sf- RM7 13 0 [1.5,0.07]MEG
#RM4 100000.0 10-R4_OP RM3 22 11 [1.5,0.07]MEG
%dc 2 6 8 RM1 6 8 [15.7,0.71K
.SUBCKT UA741 2 3 6 7 4 RM4 10 9 [10.0,0.5]K
S- IN + OUT VCC VEE Xl 2 3 6 7 4 UA741
RP 4 7 [10.0,0.51K X2 11 13 9 ' 4 UA741
RXX 4 0 [10.0,0.5]MEG .dc VIIN -2 1 .1
IBP 3 0 [80.0,4.0]NA .END
RIP 3 0 [10.0,0.5]MEG
CIP 3 0 [1.4,0.07]PF
IBN 2 0 [100.0,5.0]NA
RIN 2 0 [10.0,0.5]MEG
CIN 2 0 [1.4,0.07]PF
VOFST 2 10 [1.0,0.05]MV
RID 10 3 [200.0,10.01K
EA 11 0 10 3 1
Ri 11 12 [5.0,.25]K
R2 12 13 (50,2.5]K
Cl 12 0 [13.0,.65]PF
GA 0 14 0 13 [2700.0,135]
C2 13 14 [2.7,.14]PF
RO 14 0 [75.0,3.75)
L 14 6 [30.0,1.5]UHY
RL 14 6 [1000,50.0]
CL 6 0 [3.0,.15]PF
.ENDS UA741
*

.SUBCKT QLOG1 1 2 3
Qi 11 12 13 QNL1
RC1 1 11 (0.1,0.0]
RB1 2 12 [100.0,0.0]RE1 3 13 [0.1,0.0] Figure 2-6C. Log-ratio circuit (based on ref. 3)
RBEI 12 13 [10000.0,0.0]K
RCE1 11 13 [10000.0,0.0]K
RBC1 11 12 [1000.0,0.0]MEG
.MODEL QNL1 NPN (BF=[80.0,8.0]
+ CCS=2PF TF=0.2NS TR=6NS CJE=3PF
+ CJC=2PF VA=[50.0,5.0])
ENDS QLOG1
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of the 10 fault runs were used to train the discriminator. Using the SAS DISCRIM routine, the

following results were obtained, where combinations of selected nodes and input voltages appear

in Table 2-6A:

Discrimination Results

Using only 10 voltages (see Table 2-6A, Set A):

100% of nominal correctly classified as nominal
100% of the following faults incorrectly classified as nominal:

"R4 short" "R7 short" "RB2 short" "RC2 open"
100% of all other fault classes properly classified

Using node 2 @ Vin of 0.0099 V and node 6 @ 0.79 V:

only 1.5% of nominals correctly classified

Using nodes 2, 6, and 8 @ Vin of 0.0099 V and 1.00 V:

28% of nominals correctly classified; remaining nominals confused with:
"R4 short" "R7 short" "Rbl short" "RB2 short" "RBC2 open"

Using SAS STEPDISC reduction to 10 voltages (Table 2-6A, Set B):

82.5% of nominal correctly classified as nominal; remaining confuse with:
"R7 short" "RB2 short" "RC2 short"

Most fault classes correctly classified except "R4 short" and "R7 short"

Following the hypothesis testing procedure of eq. 1-12, the following results occurred:

Hypothesis Testing

Using the reduced STEPDISC set (Table 2-6A, Set B):

186 out of 200 (or 93%) of nominals accepted
190 of 240 faults correctly rejected
Faults incorrectly accepted:

"REl open" "RC1 open" "R3 short" "R4 open" "Q1 low"

Given the limited number of nodes for this analysis (only nodes 2, 6, and 8), we have arrived at an

unsatisfactory number of false acceptances of what are otherwise "bad" circuits. This applies to

both the discrimination analysis and hypothiesis test results. Additional nodes, such as nodes 9,

10, and 11 may have to be included. In contrast, no "good" circuits were falsely rejected.
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Table 2-6A. Analysis Voltage Sets (for log-ratio circuit)

Set A Set B
node Vin (V) node Vin (V)

2 0.0093 6 0.00986
2 0.0156 8 0.0394
8 0.0394 8 0.0497
6 0.0788 8 0.0626
2 0.198 2 0.158
8 0.397 2 0.199
6 0.794 8 0.794
2 2.00 , 0.794
8 5.04 2 1.00
6 7.99 8 1.00
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2.7. Analog Multiplexer

2.7A. Circuit Description

This circuit represents a "mixed-technology" design, where MOS transistors serve as switches that

route signals to a bipolar 741 op-amp that is wired in a conventional noninverting summation con-

figuration (Figure 2-7A). Eight inputs drive the multiplexer. We assume that proper operation

calls for at most one channel to be "on" at a given time. The SFA input file is given in Figure 2-7B.

The circuit was simulated using the full 23 transistor 741 op-amp SPICE description (Figure 2-6C).

Each MOS switch was turned on by applying +15 V to a given device's gate; all remaining MOS

gates were held at -15 V to keep them in an off state. The control voltages of + 15 and -15 V were

chosen for convenience since these are also the op-amp's supply voltages. A test voltage of +5 V

was applied to each of the multiplexer's inputs; i.e., to the drains of the MOS switches.

2.7B. Analysis

Unlike all of our previous circuit analyses, the multiplexer presents a situation where there exists

a multitude of "good" circuit operating states. Each of the "good" states corresponds to at most

one gate "on" while all other gates are "off". In the case of an 8-input analog mux, we then have

9 nominal states to consider -- the "all gates off" state plus each of the eight "one-gate-on" states.

Upon introducing a fault to the circuit, we must then attempt to see if the circuit's behavior resem-

bles any of the "good" states. If not, the circuit is rejected as "bad" in a Go/No-Go test. If a dis-

crimination analysis is performed, an attempt to identify the fault is also made.

In our analysis of the mux circuit, 100 Monte Carlo runs were performed for each of the "on" states

and the "all-gates-off" state. We then "turned on" channel 3 (by applying +15 V to its gate) and

introduced various faults to the circuit while input remained on. Channel 3 was arbitrarily chosen.

Initially, we attempted to use all nodal voltages indicated in Figure 2-7A(refer also to the %dc line

in 2-7B). However, the SAS STEPDISC procedure reduced :he useful measurement nodes to only

nodes 3 and 6.

Comparing the faulted circuit responses (each fault having 10 runs) with the "3 ON" state, the SAS

DISCRIM routine gave the following results:
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Analog multiplexer * MAIN CIRCUIT
* B. Epstein 7/90 VCC 7 0 15.0
#Vl -15.0 100 ALL OFF VEE 4 0 -15.0
#Vl 15.0 100 1 ON Vset 1 0 5.0
#V2 15.0 100 2TON * Control voltages:
#V3 15.0 100 3-ON V1 21 0 [-15.0,0.0)
#V4 15.0 100 4--ON V2 22 0 E-15.0,0.0]
#V5 15.0 100 5ON V3 23 0 [-15.0,0.0]
#V6 15.0 100 6ON V4 24 0 [-15.0,0.0]
#V7 15.0 100 7 ON V5 25 0 [-15.0,0.0]
#V8 15.0 100 8-ON v6 26 0 C-15.0,0.0]
%dc 6 3 21 22 23 24 25 26 27 28 V7 27 0 [-15.0,0.03
• V8 28 0 [-15.0,0.0)
.SUBCKT UA741 1 2 24 27 26 M1 1 21 3 4 MODI L=[4.0,0.04]U W=(6.0,0.06]
• (-) (+) OUT V+ V- + U AD=[10.0,0.1]P AS=(10.0,0.1]P
R1 10 26 [1.0,.05]K M2 1 22 3 4 MODI L=[4.0,0.04]U W=[6.0,0.06]
R2 9 26 [50.0,2.51K + U AD=[10.0,0.1]P AS=[10.0,0.1]P
R3 11 26 [1.0,0.05]K M3 1 23 3 4 MODI L=[4.0,0.04]U W=[6.0,0.06]
R4 12 26 [3.0,0.15]K + U AD=[10.0,0.1]P AS=[10.0,0.1]P
R5 15 17 [39.0,2.01K M4 1 24 3 4 MOD1 L=[4.0,0.04]U W=[6.0,0.06]
R6 21 20 [40.0,2.0]K + U AD-[10.0,0.1]P AS=[10.0,0.1)P
R7 14 26 [50.0,2.5]K M5 1 25 3 4 MODI L=[4.0,0.04]U W=[6.0,0.06]
R8 18 26 (50.0,2.5) + U AD=[10.0,0.1]P AS=[10.0,0.1]P
R9 24 25 [25.0,1.25) M6 1 26 3 4 MODI L=[4.0,0.04]U W=[6.0,0.06]
R10 23 24 [50.0,2.0] + U AD=[10.0,0.1]P AS=[10.0,0.1]P
R11 13 26 [50.0,2.01K M7 1 27 3 4 MODI L=[4.0,0.04]U W=[6.0,0.06]
COMP 22 8 30PF + U AD=[10.0,0.1]P AS=[10.0,0.1]P
Q1 3 2 4 QNL M8 1 ?8 3 4 MODI L=[4.0,0.04]U W=[6.0,0.06]
Q2 3 1 5 QNL + U AD=[10.0,0.1]P AS=[10.0,0.1]P
Q3 7 6 4 QPL .MODEL MODI NMOS VTO=-[2.0,0.1]
Q4 8 6 5 QPL + NSUB=[1.0,0.05]E15 UO=[550.0,27.5]
Q5 7 9 10 QNL X1 6 3 6 7 4 UA741
Q6 8 9 11 QNL Rout 6 0 10K
Q7 27 7 9 QNL Rstab 3 0 10K
Q8 6 15 12 QNL .op
Q9 15 15 26 QNL * .dc Vset -5.0 5.0 1.0
Q01 3 3 27 QPL .END
QiI 6 3 27 QPL
Q12 17 17 27 QPL
Q13 8 13 26 QNL
Q14 22 17 27 QPL
Q15 22 22 21 QNL
Q16 22 21 20 QNL
Q17 13 13 26 QNL
Q18 27 8 14 QNL
Q19 20 14 18 QNL
Q20 22 23 24 QNL
Q21 13 25 24 QPL
Q22 27 22 23 QNL
Q23 26 20 25 QPL
.MODEL QNL NPN(BF=[80.0,8.0]
+ RB=[100.0,5.0) CCc=2PF TF=0.2NS
+ TR=6NS CJE=3PF
+ CJC=2PF VA=[50.0,5.0])
.MODEL QPL PNP(BF=[10.0,1.0]
+ RB=[20.0,1.0) TF=INS TR=20NS
+ CJE=6PF CJC=4PF VA=[50.0,5.0])
.ENDS
.EFigure 2-7B. Analog multiplexer circuit. This file es-

tablishes nominal operation.
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Analog multiplexer * MAIN CIRCUIT
* B. Epstein 7/90 VCC 7 0 15.0
#Rleak 0.001 10 R LKI VEE 4 0 -15.0
#Rleak 0.1 10 R LK100 Vset 1 0 5.0
#Rleak 1.0 10 R LKIK * Control voltages:
#Rleak 5.0 10 R LK5K V1 21 0 -15.0
#Rleak 10.0 10 R LK1OK V2 22 0 -15.0
#Rout 0.01 10 R0710 V3 23 0 15.0
#Rstab 0.1 10 RST 100 V4 24 0 -15.0
#QNL 200.0 10 QNL--hi BF V5 25 0 -15.0
#QNL 5.0 10 QNLlo BF V6 26 0 -15.0
#QPL 10000.0 10 QPL BOPEN RB V7 27 0 -15.0
#MODI 0.01 10 MODI LOW VTO V8 28 0 -15.0
#MOD1 10.0 10 UO LOW UO Rleak 1 3 [100000.0,0.0]K
#R3 0.001 10 R3 short Ml 1 21 3 4 MOD1 L=[4.0,0.04]U
#R10 10000.0 10-RlO hi + W=[6.0,0.06]U AD=[10.0,0.1]P
%dc 6 3 21 22 23 24 25 26 27 28 + AS=[10.0,0.1]P
• M2 1 22 3 4 MODI L=[4.0,0.04]U
.SUBCKT UA741 1 2 24 27 26 + W=[6.0,0.06]U AD=[10.0,0.1]P
* (-) (+) OUT V+ V- + AS=(10.0,0.1]P
RI 10 26 [1.0,.05]K M3 1 23 3 4 MODI L=[4.0,0.04]U
R2 9 26 [50.0,2.51K + W=[6.0,0.06]U AD=[10.0,0.1]P
R3 11 26 [1.0,0.05]K + AS=[10.0,0.1]P
R4 12 26 [3.0,0.15]K M4 1 24 3 4 MOD1 L=(4.0,0.04]U
R5 15 17 [39.0,2.01K + W=(6.0,0.06]U AD=[10.0,0.1]P
R6 21 20 (40.0,2.01K + AS=[10.0,0.1]P
R7 14 26 [50.0,2.51K M5 1 25 3 4 MODI L.-[4.0,0.04]U
R8 18 26 (50.0,2.5) + W=[6.0,0.06]U AD=(10.0,0.1]P
R9 24 25 (25.0,1.25] + AS=[10.0,0.1]P
RI0 23 24 [50.0,2.0] M6 1 26 3 4 MODI L=[4.0,0.04]U
Rll 23 26 [50.0,2.0]K + W=[6.0,0.06]U AD=[10.0,0.1]P
COMP 22 8 30PF + AS=[10.0,0.1]P
Q1 3 2 4 QNL M7 1 27 3 4 MODI L=[4.0,0.04]U
Q2 3 1 5 QNL + W=[6.0,0.06]U AD=(10.0,0.1]P
Q3 7 6 4 QPL + AS=[10.0,0.1]P
Q4 8 6 5 QPL M8 1 28 3 4 MODI L=[4.0,0.04]U
Q5 7 9 10 QNL + W=[6.0,0.06]U AD=[10.0,0.1]P
Q6 8 9 11 QNL + AS=[10.0,0.1]P
Q7 27 7 9 QNL .MODEL MOD1 NMOS VTO=-[2.0,0.1]
Q8 6 15 12 QNL + NSUB=[1.0,0.051E15 UO=(550.0,27.51
Q9 15 15 26 QNL X1 6 3 6 7 4 UA741
Q10 3 3 27 QPL Rout 6 0 (10.0,0.0]K
QI1 6 3 27 QPL Rstab 3 0 [10.0,0.0]K
Q12 17 17 27 QPL .op
Q13 8 13 26 QNL * .dc Vset -5.0 5.0 1.0
Q14 22 17 27 QPL .END

Q15 22 22 21 QNL
Q16 22 21 20 QNL
Q17 13 13 26 QNL
Q18 27 8 14 QNL
Q19 20 14 18 QNL
Q202 23 24 QNL Figure 2-7B (cont.). Analog multiplexer circuit. ThisQ21 13 25 24 QPL
Q22 27 22 23 QNL file establishes faulted operation with channel 3 "on."
Q23 26 20 25 QPL
.MODEL QNL NPN(BF=[80.0,8.0]
+ RB=(I00.0,5.0J CCS=2PF TF=0.2NS
+ TP.=6NS CJE=3PF
+ CJC=2PF VA=[50.0,5.0])
MODEL QPL PNP(BF=[10.0,1.0]
'B=[20.0,1.0] TF=1NS TR=20NS

+ COJ=6PF CJC=4PF VA=[50.0,5.01)
.ENDS
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Discrimination Analysis (14 fault cases, 10 runs per fault)

100% of following faults were correctly classified (refer to second file in Figure 2-7B for identifi-
cation):

MOD1 low
QNL low
R3 shorted
RO 10
RST 100
RLK 1
RLK 100
RLK 1K
RLK 5K
RLK 10K

The remaining faults were confused with the nominal "3 ON" state (percentages following fault
are rate of correct classification):

QNL high(50%)
QPL open base(70%)
R10 high(20%)
UO low(50%)

Only 24% of the 100 "3 ON" runs were correctly classified as nominal, the remainder being clas-
sified among the above four faults.

SAS's nonparametric NEIGHBOR routine, which classifies the faults according to a nearest-

neighbor rule, yielded slightly better results. The following faults were confused with the nominal

"3 ON" state:

Nearest Neighbor Discrimination (14 fault cases: 10 runs per fault)
QNL high(20%)
QPL open base(80%)
RIO high(20%)
UO low(10%)

78% of "3 ON" nominal cases were correctly classified as nominal.

The nearest neighbor method had a better success of classifying the nominal "3 ON" runs, but the

fault classification was slightly worse overall compared to the conventional probabilistic discrim-

ination.
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The hypothesis testing for Go/No-Go testing (by eq. 1-12) resulted in the following:

Hypothesis Testing (14 fault cases: 10 runs per fault)

100% of the circuits with the following faults .led to incorrect acceptance:
R10 high
UO low
QPL open base
QNL high

All remaining faulted circuits were correctly rejected as "bad"
96 of 100 "good" "3-ON" circuits were correctly accepted

Of the 14 fault cases introduced, four types of faults could not be separated from the "3-ON" nom-

inal case. This ambiguity occurred in both the hypothesis testing and the two forms of discrimi-

nant analysis. Given that only two nodal voltages were used, this result is quite impressive but not

adequate for any production test. More test nodes are likely required, particularly within the op-

amp.

2.7C. Analog Multiplexer Summary

Recall from our previous circuits that the use of the discrimination analysis for performing Go/No-

Go testing is a risky procedure. This is because there may exist faults that were not accounted for

during the construction of the discrimination algorithm. The introduction of unknown faults not

accounted for during the construction of the discriminator can result in an ambiguous classification

of the unknown fault - in particular classification as a "nominal" circuit. In contrast, the simple

hypothesis test was constructed only with nominal runs. Terefore, unknown faults can be intro-

duced into the test. Of course, this test provides no information on the specific cause of the fault.

In the case of a multistate circuit, such as the analog multiplexer, the response of a given circuit

under test could be subjected to a series of hypothesis tests where each test corresponds to one of

the many possible "good" states. For example, a test sequence for the 8 channel mux may call for

turning on each of the eight channels one at a time, and applying a hypothesis test based on the

assumed nominal response of the circuit with the same channel turned on. In the analysis of this

report, we only checked for the proper operating condition of the mux circuit with channel 3 on.

A full test would require that this test be repeated for each of the remaining seven channels.
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2.8. D/A Converter

2.8A. Circuit Description

The digital-to-analog (D/A) converter of this study makes use of a bank of current sources whose

currents are summed and converted to a voltage by an op-amp circuit. Each current source is set

on or off according to the bit pattern submitted to the circuit. Figure 2-8A shows the overall circuit,

which provides 4 bits of resolution. The circuit's current sources were derived from a high-speed

video D/A design developed at the David Sarnoff Research Center. One current source, supplying

current 10, is shown in Figure 2-8B. The circuit makes use of PMOS devices. Transistors P1 and

P2 serve as current sources, while transistors P3 and P4 "steer" the current either to ground or the

output port lOUT" Current is routed to lout when +5V is applied to terminal Vc. When zero volts

is applied to Ve, the current through OUT is approximately zero. The magnitude of the current

through loUT is set by the voltage difference between VDD and VR. Note that when the circuit is

in the "off' state (i.e., IoUT = 0), the effective impedance at the 1OU T terminal is high to prevent

the loading of other current sources in the D/A converter.

The circuit of Figure 2-8B is set to provice I0 = 44.2 u±A to a 500 Q load. By eliminating P2 , 1/2

I0 is achieved. Connecting P1 and P2 in series results in 1/4 I0 (refer to SFA/SPICE file in Figure

2-8C for the configuration of these modifications to the current sources). The SPICE MOS model

sheet resistance parameter RSH was set to the default value (10 0/sq.) since other values caused

the program to crash.

The op-amp is wired in a current-summation / inverting amplifier configuration. The amplifier's

gain was set (by Rf) to produce an output of roughly 0.1 V per bit, or -1.5V full scale (for bit pattern

1111). For convenience during the simulations, the op-amp was modeled using the full 741 model.

In practice, however, the speed and offset characteristics of this op-amp do not match the superior

switching characteristics of the current sources, thus a high performance D/A converter would not

use this op-amp.
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2.8B. Fault Analysis

Faults were introduced into the circuit by changing the setting of the variable resistors Rshor and

Ropen (Figure 2-8A). The shorting of each current source to ground was represented by setting a

current source's respective Rshort to 1 Q. Likewise, the setting of a current source's corresponding

Ropen to 10,000 MCI effectively opened that current source.

To create as broad a fault coverage as possible without having to resort toa combinatorial explosion

of test steps, we introduced the simple test pattern of sequentially turning on each bit from the least

significant to the most significant; i.e., 0000, 0001, 0011, 0111, 1111. For each bit pattern, each

open and short condition was then applied to the circuit. Only one fault at a time was considered.

Fifty Monte Carlo runs were applied for each fault condition. "Nominal" operation was defined as

circuit operation without any faults applied. The overall procedure was applied with a one sigma

variation of 5% and 2.5%.
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CURRENT SOURCE 10
D3 0-- 1hr

"U=_R 

RfO

CURRENT 
SOURCE 11

Ro"e RIu

Rshort

Do - CURRENT SOURCE 1 >Vu

Do W CURRET SOUCE 1410 
=11 = 12

13 = (1/2)12

rt  14 = (1/2)13 = (1/4)12

Figure 2-8A. 4-bit D/A converter. The current sources are switched on by application of 5V to the
control inputs Dn. The variable resistors represent the application of shorts and opens to the current
source outputs.
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VDD

VR P1 P2

P3

VC-

P 4

VCGSou

Figure 2-8B. Current source used in D/A converter of Figure 2-8A. PMOS devices are used. See
text for details of operation (source: David Sarnoff Research Center).
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PMOS/Bipolar D-A Converter VOFST 2 10 (1.0,0.05)MV
" Uses Sarnoff current sources RID 10 3 [200.0,10.03K
" B. Epstein 8/90 EA 11 0103 1
#GOOD 50 Ri 11 12 (5.0,.253K
#RXOO 10000.OMEG 50 IOP0lli R2 12 13 [50,2.5)K
#RXOl 10000.OMEG 50 IlPO111 Cl 12 0 [13.0,.653PF
#RXO2 l0000.OMEG 50 12P0111 GA 0 14 0 13 (2700.0,135)
#RX03 l0000.OMEG 50 13P0111 C2 13 14 (2.7,.l4IPF
#RX04 10000.OMEG 50 14P0111 -RO 14 0 (75.0,3.75]
#RXSO .001 50 I0S0111 L 14 6 [30.0,1.5JUHY
#RXS1 .001 50 11SO111 RL 14 6 [1000,50.0)
#RXS2 .001 50 MOM11 CL 6 0 [3.0,.153PF
#RXS3 .001 50 13S0111 .ENDS UA741
#RNS4 .001 50 14S0111*
%dc 7 820 21 2223 * MAIN CIRCUIT*k
* Full current source:*
.SUBCKT ISOURCE 1 2 4 5 6 *Voltages:

* VDD1 VR VC VGCS lout VCC 10 0 15.0
MPl 3 2 1 1 PE L=(4.0,0.23U W=[8.0,0.4]U VEE 11 0 -15.0
MP2 3 2 1 1 PE L=[4.0,0.2]U W=(8.0,0.43U VDD1 1 0 (5.0,0.051V
MP3 0 4 3 1 PE L=(1.3,0.07]U W=E[8.0,0.4]U VR 2 0 [3.2,0.OlIV7
MP4 6 5 3 1 PE L-[2.0,0.1]U W=[8.0,0.43U VGCS 5 0 [1.7,0.021V
.ENDS ISOURCE VCO 20 0 0.0

*VC1 21 0 5.0
*1/2 current PMOS source: VC2 22 0 5.0
.SUBCKT ISOURCE2 1 2 4 5 6 VC3 23 0 5.0
* VDD1 VR VC VGCS Iout*
MP1 3 2 1 1 PE L=[4.0,0.2JU W=(8.0,0.4]U *Connections:

MP3 0 4 3 1 PE L=(1.3,0.07JU W=[6.0,0.3]U XOA 1 2 20 5 30 ISOURCE
MP4 6 5 3 1 PE L([2.0,0.13U W=[6.0,0.3]U XOB 1 2 20 5 31 ISOURCE
.ENDS ISOURCE2 xl 1 2 21 5 32 ISOURCE

*X2 1 2225 33 ISOURCE2
*1/4 current PHOS source: X3 1 2 23 5 34 ISOURCE4
.SUBCKT ISOURCE4 1 2 4 5 6 * Catastrophic Faults:
* VDD1 VR VC VGCS Iout RXOO 30 6 [0.5,0.0]
MP1 3 2 1 1 PE L=(4.0,0.23U W=[8.0,0.4]U RX01 31 6 (0.5,0.0)
14P2 8 2 3 1 PE L-(4.0,0.2]U W=[8.0,0.4JU RX02 32 6 [0.5,0.0)
MP3 0 4 8 1 PE L=(1.3,0.07]U W=([4.0,0.2]U RX03 33 6 [0.5,0.0]
MP4 6 5 8 1 PE L-[2.0,0.lJU W=(6.0,0.3]U RX04 34 6 [0.5,0.0]
.ENDS ISOURCE4 RXSO 30 0 [10000.0,0.0]K

*RXSl 31 0 (10000.0,0.0]K
*PMOS Switch Model: RXS2 32 0 [10000.0,0.0]K
.MODEL PE PMOS(LEVEL=3 VTO=(-0.75,0.07J RXS3 33 0 [10000.0,0.0]K
TOX=[250.0,12 .OJE-10 RXS4 34 0 [10000.0,0.0]K
+ NSUB=1.3E16 LD=0.0 UO=190.0 RSUM 6 7 (500.0,5.03
+ VMAX-8.366E5 THETA=0.175 ETA=0.20 KAPPA=3.335 RF 8 7 (9258.7,92.5]
+ XJ=0.45E-6 NFS=1.0E12 TPG=l DELTA=1.2 X741 7 0 8 10 11 UA741
+ CGSO=2.5E-10 CGDO=2.5E-l0 CJ=3.18E-4 CJSW=1.97E-10 .op
+ MJ=0.57 MJSW=0.12 PB=0.8) .end

*Op-Amp (linearized 741 model)
.SUBCKT UA741 2 3 6 7 4
* - IN + OUT VCC VEE
RP 4 7 [10.0,0.51K
RXX 4 0 (10.0,0.53MEG
IBP 3 0 (80.0, 4.O3NA
RIP 3 0 (10.0,0.53MEG
CIP 3 0 (1.4,0.O7JPF
IBN 2 0 :.00.0,5.03NA
RIN 2 0 (10.0,0.5JMEG
CIN 2 0 (1.4,0.O7JPF

Figure 2-8C. SFA input file for D/A converter. Component variation specified as I a Y 5%.
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The output of the SFA routines were analyzed using the SAS DISCRIM function. Figure 2-8D

shows typical output from the program for the bit pattern 0111. The fault classes are identified by

the code name INX01 11, where N refers to which of the five current sources (numbered 0 to 4) is

faulted, and X replaces the letter P for "open" or S for "short." Nominal cases are identified by the

fault class label ONO 111.

At first glance, it appears as though very poor classification has taken place, and that many of the

fault classes become confused among each other and the nominal case. However, well-defined pat-

terns do emerge from the data. In the case of 0111 @ 5% sigma, 94% of the faults where current

source 2 was opened were properly classified. This current source is also the most significant "on"

bit. Similar highly successful classification rates were obtained for the other bit patterns when the

most significant "on" bit's current source was opened. The success of the classification dropped

as the current sources corresponding to consecutively lower significant bits were opened. This is

because the contribution of the lower significant bits became masked by the inherent variability of

the circuit performance. Table 2-8A summarizes the discrimination results.

Another pattern that emerges from the data is the creation of two distinct fault groups. The first

group forms an ambiguity set among the nominals and lower significant bit open current sources.

The second group forms an ambiguity set containing all the short-circuited cases. The cause of the

short circuit grouping is obvious when viewing Figure 2-8A. A short circuit anywhere along the

current summation bus (at V6) produces essentially the same effect. The ambiguity group that con-

fuses several open cases and the nominals arises for two reasons. The first reason is bits that are

already turned off will not be affected by the presence of an open circuit at the corresponding cur-

rent source. The second reason was discussed above, where the inherent variability of the circuit

masks contributions from the lower F'gnificant bits.

Note most of the circuit variability arises from the op-amp portion of the circuit. However, the in-

herent variation of the current sources themselves can result in bit error. This can be seen by re-

viewing the nominal currents and their standard deviation over 50 Monte Carlo runs (at parameter

variations of 1 sigma = 5%):
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current source mean (RA) Std. Dev. (uA)
10 42.06 6.21
I1 42.06 6.21
12 42.06 6.21
13 21.25 3.53
14 10.46 1.68

Since the current sources 10 and I1 are doubled to create the most significant bit, sufficient variation

in 10 and I1 can mask 14, resulting in bit error and fault detection ambiguity.
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CIassifICOIlon of D011 data

Discr1-l0)t. Analysis Classification Sumary for Calibration Data WORK CRAWCA

R.subititutbon Sumiary using Quadratic Discriminant Fwucn.on

Gonten .iz:ed Sqoyrid Distance F-tion: Postseror Probability of )1erberhs4p in each FALM-l

2 -1 2 2

D CX) - (X-X Y COV (X-X) * In ICOV I ?:CJIX) - .xp(- 5 D (X)) I SUM *xp(- 5 0 (X))

J j 1 1 J k I

Kosber of Cbstrvations and Percent Classified into FAULTI.

Fro FAULT1 0OP0111 IOPOIOX O1S011I 0220111 T2S0111 0320111 12Sl 1I3P00 1111 1Pl 011 IC53.:1 000111 Total

t000111 8 13 0 0 0 10 0 10 0 0 9 s0

16 00 20.00 0.00 0.00 0 00 20.00 0 00 20 00 0.00 0 00 18.00 100 00

I120111 0 19 0 0 0 4 0 1 0 0 7 s0

10.00 38.00 0 00 0 0 0 00 a 00 0.00 30 00 0 00 0 O0 10 00 100 00

MM0111 0 0 a 0 14 0 7 0 5 16 0 s0

0.00 0.00 16.00 0.00 28.00 0.00 14.00 0 00 10.00 32 00 0 00 100 00

1220111 0 0 0 47 0 3 0 0 0 0 0 50

0 05 0.00 0.00 90.00 0.00 0.00 0 0 0 00 0.00 0 00 0.00 100 00

1280111 0 0 1 0 35 0 3 0 0 11 0 s0

0.00 0.00 2 00 0.00 70.00 0.00 6.00 0.00 0.00 22 00 0.00 100 00

0320111 1 1 0 4 0 34 0 10 0 0 0 s0

2 00 2.00 0.00 8.00 0.00 68.00 0.00 20.00 0 00 0 00 0 00 100.00

1300111 0 0 4 0 17 0 5 0 2 22 0 50

0 00 0.00 6.00 0.00 34.00 0 00 10 00 0 00 4.00 4.00 0.00 100 00

1400111 3 6 0 0 0 i6 0 21 0 0 4 s0

6 00 12.00 0.00 0.00 0.00 32.00 0.00 42.00 0 00 0 00 8.00 100 00

1$0111 0 0 4 0 14 0 8 0 4 20 0 50

0.00 0.00 6.00 0.00 28.00 0.00 16.00 0.00 6 00 40 00 0 00 100.00

I00111 0 0 3 0 8 0 0 0 2 32 0 50

0.00 0.00 6.00 0 00 16.00 0,00 10.00 0.00 4.00' 64.00 0.00 100 00

000111 7 16 0 0 0 7 0 6 0 0 12 s0

14 00 32 00 0.00 0 00 0.00 14.00 0.00 06 00 0.00 0 00 24.00 100.00

Total 24 is 20 51 Is 74 28 64 13 101 32 530

Percent 4.36 10.00 3.64 9.27 16.00 13.45 0.09 11.64 2.36 18.36 5.62 100 00

Priors 0.0009 0.0009 0.0809 0.0009 0.0909 0.009 0.0909 0.0009 0.0009 0 0909 0 090

DA -- Digial Analog Convrter

Figure 2-8D. Typical SAS output for analysis of D/A converter. Print-out for the bit pattern 0111 is shown.

Part 2. Examples 97



0.

0

C

C 2
*0

0 C

0. *

o Cc

02 U

q0~ 0 = a
V &C U uV4 L( L L

m CLm 9: m " CL 0 m 0 0. . =

CcC

982



2.9. Distributed Amplifier

2.9A. Circuit Description

The distributed amplifier used in this study is based on a design constructed at the David Sarnoff

Research Center. The design calls for the use of monolithic microwave integrated circuit technol-

ogy and contains four FETs connected in a travelling wave configuration (see Figures2-9A and 2-

9B). SPICE simulations made use of the Statz-Raytheon MESFET model, as implemented in UC

Berkeley's SPICE 3C1. The frequency range of the simulations spanned 1 to 20 GHz. A repre-

sentative SFA input file gives further details of the circuit (Figure 2-9C).

2.9B. Fault Analysis

The fault analysis was confined to each of the possible opens or shorts at each of the four FETs.

However, no more than one short or open could simultaneously exist. Data used for the analysis

were the DC gate and drain voltages of the devices, as well as the overall AC output voltage from

the circuit. These voltages were selected because they are easily accessible in real measurements.

Note that because the circuit operates at microwave frequencies, AC measurements of the internal

circuit nodes are generally difficult and impractical to obtain because of probe loading effects (un-

less newer methods, such as optical probing, are used). Device and circuit resistances and capac-

itances were given standard deviations a of 1%, 5%, and 10% for nominal variations. A standard

deviation of 1% variation was assigned to the transmission line parameters throughout the analy-

sis.

As in past circuits explored in our work, we applied both the discrimination analysis and hypothesis

testing methodologies. 100 Monte Carlo runs for each fault type trained the discriminator, and

100 Monte Carlo runs were used to test the discriminator and hypothesis testing. Training and

testing made use of the same data.

The results were very encouraging. For the a = 10% case, Table 2-9A shows the results of the

fault classification and hypothesis tests. Note, that the hypothesis test, i.e., the test of whether or

not a circuit falls into the nominal category or alternatively does not, is not nearly as effective as
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the classification process. This is because during the construction of the classification rules the

distributions of the fault classes are used to partition the parameter space according to the possible

faults that can occur. However, during the hypothesis test only the distribution of the nominal cir-

cuits is considered. It happens that the 95% contour of the nominal circuit distribution overlaps

some of the faulted circuit distributions. Consequently there are several faults which are misclas-

sified as nominal (see Figure 2-9D). However, because the discrimination takes into account each

of the fault distributions, fault misclassification rarely occurs using the classification rules.

For the data from a = 5% and 1% cases, all faulted and nominal circuits were correctly classified

and all faults were rejected using the hypothesis test. This is quite an encouraging result.
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Table 2-9A
Summary of Discrimination and Hypothesis Test Results

for a = 10% component variation

Fault Class % Correctly Classified % Correctly Detected
(discriminant analysis) (hypothesis test)

1 Nominal 90% 93%
2 RDlOpen 100 70
3 RSlOpen 100 100
4 RG1 Open 100 100
5 GSlShort 100 100
6 DSl_Short 100 100
7 GDlShort 100 100
8 RD2_Open 99 100
9 RS2_pen 89 70
10 RG2_Open 100 100
11 GS2_Short 100 100
12 DS2_Short 100 100
13 GD2_Short 100 100
14 RD3_Open 99 100
15 RS3_Open 94 80
16 RG3JOpen 97 100
17 GS3_Short 100 100
18 DS3_Short 100 100
19 GD3_Short 99 100
20 RD4_Open 98 100
21 RS4_-Open 88 70
22 RG4_Open 99 100
23 GS4_Short 100 100
24 DS4_Short 100 100
25 GD4_Short 100 100

= 5% component variation
1 Nominal 100% 94%
2 All faults 100 100

a = 1% component variation
1 Nominal 100% 98%
2 All faults 100 100
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drain

I: D

RD
RGD

LG RG CGD RDS
gate. CDS

CGS

RS

LS

source

Figure 2.9B. Detail of the FETs in distributed amplifier of Figure 2-9A. All
resistances are varied during the analysis to invoke catastrophic faults.
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Distributed Amplifier .SUBCKT FET2 1 2 3
* B. Epstein 8/90 LD2 1 11 0.04nH
* sigma = 5% for all component values RD2 11 21 (2.0,0.2]
* sigma = 1% for all dimensions LG2 2 12 0.065nH
* Nominal Circuit: RG2 12 22 [1.0,0.1]
#GOOD 100 LS2 3 13 0.025nH
* RS2 13 23 [1.0,0.11
* FETI Faults RGS2 22 23 [10000.0,0.0]K
#RDl 1.0e6 100 RDlOPEN RDS2 21 23 [10000.0,0.0]K
#RS1 1.0e6 100--RS1 OPEN RGD2 21 22 [10000.0,0.0]K
#RG1 1.0e6 100 RG1-OPEN CGS2 22 23 [0.55,0.055]pF
#RGS1 0.001 100 GS1 SHORT CDS2 21 23 (0.12,0.012]pF
#RDS1 0.001 100 DS1 SHORT CGD2 21 22 (0.025,0.0025]pF
#RGD1 0.001 100 GD1-SHORT Z2 21 22 23 MES2
* .MODEL MES2 NMF (VTO=(-2.66,.027]
* FET2 Faults BETA-J0.3239,0.032] B=13.527,.35]
#RD2 1.0e6 100 RD2 OPEN + ALPHA=J3.0,0.3] LAMBDA=(0.0475,0.0047]
#RS2 1.0e6 100 RS2 OPEN PB-0.6)
#RG2 1.0e6 100 RG2 OPEN .ENDS FET2
#RGS2 0.001 100 GS2 SHORT *
#RDS2 0.001 100 DS2 SHORT .SUBCKT FET3 1 2 3
#RGD2 0.001 100 GD2-SHORT LD3 1 11 0.04nH
* RD3 11 21 [2.0,0.2)
* FET3 Faults LG3 2 12 0.065nH
#RD3 1.0e6 100 RD3 OPEN RG3 12 22 (1.0,0.1]
#RS3 1.0e6 100 RS3 OPEN LS3 3 13 0.025nH
#RG3 1.0e6 100 RG3-OPEN RS3 13 23 [1.0,0.1]
#RGS3 0.001 100 GS- SHORT RGS3 22 23 [10000.0,0.0]K
#RDS3 0.001 100 DS3-SHORT RDS3 21 23 [10000.0,0.0]K
#RGD3 0.001 100 GD3_SHORT RGD3 21 22 [10000.0,0.0]K
* CGS3 22 23 (0.55,0.055]pF
* FET4 Faults CDS3 21 23 [0.12,0.012]pF
#RD4 1.0e6 100 RD4 OPEN CGD3 21 22 [0.025,0.0025]pF
#RS4 1.0e6 100 RS4-OPEN Z3 21 22 23 MES3
#RG4 1.0e6 100 RG4-OPEN .MODEL MES3 NMF (VTO-[-2.66,.27]
#RGS4 0.001 100 GS4 SHORT BETA-J0.3239,0.032] B-[3.527,.35]
#RDS4 0.001 100 DS4-SHORT + ALPHA-[3.0,0.3] LAMBDA=10.0475,0.0047]
#RGD4 0.001 100 GD47SHORT PB-0.)
* .ENDS FET3
%POLAR *
%dc 1 2 3 4 11 12 13 14 .SUBCKT FET4 1 2 3
%ac 46 LD4 1 11 j.04nH
.SUBCKT FET1 1 2 3 RD4 11 21 (2.0,0.2]
LD1 1 11 0.04nH LG4 2 12 0.065nH
RD1 11 21 [2.0,0.2] RG4 12 22 (1.0,0.11
LG1 2 12 0.065nH LS4 3 13 0.025nH
RG1 12 22 [1.0,0.1) RS4 13 23 [1.0,0.11
LS1 3 13 0.025nH RGS4 22 23 (10000.0,0.0]K
RS1 13 23 [1.0,0.11 RDS4 21 23 [10000.0,0.0]K
RGS1 22 23 [10000.0,0.0]K RGD4 21 22 [10000.0,0.0]K
RDS1 21 23 [10000.0,0.0]K CGS4 22 23 [0.55,0.055]pF
RGD1 21 22 (10000.0,0.0]K CDS4 21 23 (0.12,0.012]pF
CGS1 22 23 [0.5 5 ,0.055 ]pF CGD4 21 22 [0.025,0.0025]pF
CDS1 21 23 (0.12,0.012]pF Z4 21 22 23 MES4
CGDl 21 22 (0.025,0.0025]pF .MODEL MES4 NMF (VTO=[-2.66,.27]
71 21 22 23 MESI BETA-[0.3239,0.032] B-(3.527,.35]
.MODEL MESI NMF (VTO-[-2.66,0.027] + ALPHA-[3.0,0.3] LAMBDA-(0.0475,0.00471
BETA-[0.3239,0.032] B-[3.527,0.35] PB-0.6)
+ ALPHA-(3.0,0.3] LAMBDA=[0.0475,0.0048] .ENDS FET4
PB-0.6) *
.ENDS XZI

Figure 2-9C. SFA input file for 4 transistor distributed amplifier

104 Part 2. Examples



*Devices:

XZ1 11 1 0 FET1
XZ2 12 2 0 FET2
XZ3 13 3 0 FET3
XZ4 14 4 0 FET4

*Transmission Lines:
TAI 1 0 2 0 ZO=[62.3,.6) TD=[0.689,.OO7Jps
TA2 2 0 3 0 Z0=(62.3,.6J TD=[0.689,.007Jps
TA3 3 0 4 0 ZO=(62.3,.6J TD=[O.689,.007)ps
TA4 4 0 5 0 z0=(62.3,.6J TD=[0.G89,.007)ps
TB1 7 0 11 0 Z0=[50.0,.5J TD=(0.704,.007Jps
TB2 8 0 12 0 Z0=[50.0,.5] TD=(0.704,.007Jps
TB3 9 0 13 0 Z0-(50.0,.5] TD=(0.704,.OO7Jps
TB4 10 0 14 0 ZO=[50.O,.5J TD=[O.704,.OO7Jps
TC1 4 0 5 0 Z0=(81.6,.8] TD=[1.787,.017)ps
TC2 7 0 6 0 ZO=(81.6,.8] TD=(1.787,.Ol7Jps
TD1 7 0 8 0 z0=(80.O.81 TD=[1.61,.016]ps
TD2 8 0 9 0 ZO=(R.0,.8) TD=[1.61,.016]ps
TD3 9 0 10 0 Z0=[80.0,.8) TD=[1.61,.016]ps
TD4 10 0 11 0 Z0=[80.0,.8] TD=[1.61,.016]ps
TIN 25 0 1 0 Z0=[50.0,.5] TD=[0.5,.005]ps

*Terminations:

RG 5 35 [10.0,1.0)
CG 35 0 [10.0,1.O]pf
RD 6 36 [30.0,3.0)
CD 36 0 (10.0,1.O]pf
COUT 11 46 (5.0, .5]pF
ROUT 46 0 (50.0,5.0]

*DC Bias:
LBI1 40 25 10.0mH
LB12 41 11 10.0mH
VG 40 0 -1.0
VD 41 0 6.0

*Signal:

VGEN 44 0 AC 2.0
RIN 44 45 (25.0,2.5]
CIN 45 25 (1.0,0.1]pF

*Control:

.ac lin 5 1.OG 20.OG

.end

Figure 2-9C (cont). SFA input file for 4 transistor distributed amplifier
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nominal distribution distribution for a fault

.0
0
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hypothesis test rejection parameter hypothesis test rejection

hypothesis test failure

Figure 2-9D. Hypothesis test failure. The curves are the probability distributions of a given mea-
surement parameter (e.g., a node voltage) for the nominal circuit and a faulted case. The hypoth-
esis test fails when a faulty circuit's distribution lies within the 95% region of the nominal circuit
distribution, as shown. The hypothesis test only rejects circuits outside of the 95%; i.e., circuits
whose response lies within the shaded region of the nominal curve (and beyond), which corre-
sponds in this example to a level of significance of 5%.
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2.10. Summary of Examples

For the most part, the example circuits investigated during this study yielded results that encourage

further consideration of the use of classification techniques for identifying faults in analog micro-

circuits. Table 2-10A provides a summary of the results. Five of the nine circuits yielded APERs

of less than 1%. Those circuits with higher APERs deserve further analysis (i.e., different mea-

surement nodes, operating conditions, etc.) to reduce their error rates. Likewise, other classifica-

tion schemes should be investigated to improve the classification and fault detection power of the

tests. One promising means of classification employes neural networks [20].

Although the examples make fault detection and classification promising, one major caveat per-

sists -- the fault detection and classification methods must be performed using real IC data! Real

data will reflect the true variability of circuit performance and component behavior, and violate

many of the implicit assumptions of th analyses performed in this study (e.g., the assumption of

normality, accuracy of the componen, models and simulations). The work described in this report

sets the stage for such a study.

Explanation of Table 2-10A (next page):

1. "Measurement" refers to simulated voltage data
2. APER is the apparent rate of error (see Section 1.4).
3. 2-class discrimination analysis and hypothesis tests performed Go/No-Go testing.
4. Refer to Section 2.8 for explanation of high APER.
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Appendix; Using the Statistical Fault Analyzer (SFA)

The SFA has two modes of operation. The first mode generates a training set file, where the file is

later used during an analysis by SAS (or other statistical analysis package). The second mode per-

forms classification and hypothesis testing of simulated test data. Both modes use a common input

file based on SPICE syntax. Refer to Section 1.4 for further information on the overall program

flow.

A.1. Input File

The construction of the an input file is best understood by example. Figure A-I shows a file for the

one-stage amplifier, which was analyzed extensively in Section 2.1. (NOTE: the line numbers at

the beginning of each line in the Figure A-1 are not to be inserted in the file; they only have been

added for clarity.) SPICE users will immediately notice that much of the file follows standard

SPICE syntax, with the exception of a few added lines and symbols. All users should become fa-

miliar with SPICE before using the SFA!

1) Comment Lines

The first line of the file can be any text string. Use this line to identify the purpose of the file. All

subsequent "comment lines" in the file mL. 'egin with the *symbol (e.g., lines 4, 15, 20, 21).

2) Fault Specification Lines

Fault specifications begin with the # symbol (lines 5 to 14). Going across a line beginning with #,

the following information is supplied:

For SPICE passive components:
Component name (immediately following the # sign)
Component value when component is faulted
The number of Monte Carlo simulations to be performed while the component is faulted
A user-specified one-word text label identifying the fault.

For SPICE active device models:
The above four parameters plus the name of the SPICE model parameter to be faulted.
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1 Single-stage amplifier
2 * Nominal Operation:
3 #GOOD 200
4 * Faults:
5 #RC 1.0e6 200 RC OPEN
6 #RE 1.0e6 200 REOPEN
7 #RB 1.0e6 200 RB-OPEN
8 #RB 1.0 200 RB Short
9 #Rbc 1.0 200 RBCShort
10 #Rbe 1.0 200 RBE-Short
11 #Rce 1.0 200 RCEShort
12 #R3 0.001 200 RiShort
13 #QNL 1.0 200 Q low BF
14 #QNL 200.0 200-Q hi BF
15 * Statistical Analysis Nodes:
16 %dc 1 2 3 7
17 %ac 2 3 7
18 %TRACE
19 %POLAR
20 *
21 * Circuit:
22 VCC 8 0 5.0
23 RSDC 8 2 1.0
24 VIN 10 0 AC 1
25 CIN 10 1 100.OUF
26 R3 2 3 [1.2,.06]K
27 RC 3 6 [1.0,0.0]
28 RB 1 5 [100.0,5.0]
29 R2 2 1 [61.0,3.1]K
30 R1 1 0 (17.6,0.9]K
31 RE 4 7 [1.0,0.0]
32 R4 7 0 (300.0,15.0]
33 Rbc 5 6 [1.0e8,0.0]
34 Rbe 5 4 [1.0e8,0.0]
35 Rce 6 4 (1.0e8,0.0]
36 Q1 6 5 4 QNL
37 .op
38 .AC LIN 1 100 100hz
39 .model QNL NPN(BF=[80,12] CCS=2PF TF=0.3NS TR=6NS CJE=3PF
40 + CJC=2PF VA=[50,7.5])
41 .END

Figure A-i. Example SFA input file for one-stage amplifier.
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Use the component name as it appears in the SPICE circuit description. For example, line 7 states

that resistor RB is to be faulted. Resistor RB is defined on line 28. On line 7, resistor RB acquires

the value of 1 megQ when it is faulted. The value specified replaces the square brackets, and the

quantities between them, in the SPICE specification (line 28 in this case). Any units specified out-

side of the brackets on the SPICE line are preserved, even during the fault simulation. Therefore,

a faulted value of 0.001 for R3 (line 12) takes on the value of 0.001K, since in line 26 the unit of

K (for kilo-ohms) is present.

The number of Monte Carlo iterations may be any positive integer starting at 1. In this example,

all faults have 200 iterations; however, different faults can have different iteration counts. The text

label is used by SAS (and other programs) to specify the class name for each fault. This label is

also used to identify and display fault types when SFA operates in the test mode.

Note active device models include the name of the SPICE parameter to be modified when the com-

ponent is faulted. In this example the active device, QNL, is used only once. However, when there

are multiple instances of the active component. its modified value will be used wherever that com-

ponent is instanced.

Users can take full advantage of SPICE3CI's submodeling capability. Components within sub-

models are faulted in the manner described above (for example, see Figure 2-9C).

The line #GOOD 200 (line 3) states that 200 simulations of nominal circuit operation are to be per-

formed. No component value or identification label is specified in this line.

During SFA operation, each fault is activated one at a time for the specified number of Monte Carlo

simulations. When the specified number of simulations at a given fault is completed, the next fault

in the list is executed.

3) Nominal and Standard Deviation Specification

These parameters are specified within the squared brackets [ for all nondeterministic components

in the SPICE file. The first value is the mean component value, and the second parameter is the 1

sigma standard deviation (e.g., see lines 26 to 35). The unit specification outside the square bracket
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is preserved. When in operation, the SFA effectively replaces the bracketed quantities with values

that vary randomly from Monte Carlo iteration to iteration.

All components that are to be faulted must also have a square bracket specification, even if such

a component is not to vary randomly. In the latter case, use 0.0 as the standard deviation (e.g., lines

33-35).

4) Analysis Outputs

DC nodal voltages to be sent to the training set file are specified by the %dc line. In the example,

line 16 states that DC nodal voltages at nodes 1, 2, 3, and 7 are to be stored. AC phasor voltages

are stored in the same manner; however, the real and imaginary part for each node in the %ac line

are now stored. If the user desires that the phasor voltages be stored by magnitude (in dB) and angle

(in degrees), use the key word %POLAR (line 19). If %POLAR is not specified, the AC phasors

are stored as real and imaginary parts. Multiple %dc and %ac lines may be used when all node

numbers cannot fit on one line.

5) Tracing

As explained in Section 1.4, the SFA generates a standard SPICE input file to be read by SPICE

during each Monte Carlo iteration. The SFA replaces all values between the square brackets with

faulted and random component values when constructing the SPICE inpui files. The user may ob-

serve these files on the screen, just prior to each SPICE simulation, by including the key word

%TRACE (line 18). When %TRACE is not specified, a series of dots will trail across the screen

while SFA operates. Each dot represents one Monte Carlo iteration; hence, one SPICE exe,.ution.

6) File Name

Name all SFA input files using the extension .cat. For example, the circuit of Figure A-1 has the

nme samp.cat.
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A.2. Output Files

The SFA program generates two files, both using the name of the input file, but with its .cat exten-

sion ieplaced by either .key or .sas.

1) Data File

The data file contains the numerical results of the simulations, which are the DC and AC nodal

voltages indicated on the %dc and %ac lines of the input file, respectively. This file can become

quite large when there are many Monte Carlo iterations for each fault, or when outputs are frequen-

cy or voltage swept. This file is automatically named by the SFA, and takes on the input file name

followed with the extension .sas . Each field in the file is the fault label (specified on the # lines of

the input file), followed by the nodal voltages. All voltages (AC and DC) are in the units of volts,

except when the input file contains the %POLAR keyword. In this case, the AC voltages are spec-

ified in DC and degrees. Figure 1-9 shows a sample sas file.

2) Key File

This file tells the user the meaning of each data column in the data output file. The key file name

uses the input file name, followed by the .key extension. Three columns are contained in this file.

The first column is the column number in the data output data file. The second and third columns

specify the node and the type of voltage, respectively. For example, the term operating refers to

DC operating point. acan real and acan imag refer to real ard imaginary parts of the AC analysis

voltages, respectively. In general, labeling terms contained in the rawspice (c.f. Section 1.4) file

are what appear as identifiers.

A.3 Program Execution

The SFA program, as shipped with this report, has the name bsct. The software is intended to op-

erate on most SUN Microsystems workstations, including the series 3, 4, and SPARCstation com-

puters.

115 Appendix



1) Training Set Generation

To generate a training set with bsct, simply enter

bsct
The prompt

Enter name of training set file
(or SKIP to skip statistical analysis)

will appear. Type in skip (upper or lower case), which will tell bsct that testing is not to be per-

formed. The prompt

Enter SPICE input file:

then appears. Enter the name of the SFA input file you wish to analyze. Do not forget the .cat ex-

tension. bsct then reads in the file, and reports any errors. With no errors present, the SPICE exe-

cutions begin for each fault type. A dot will appear on the screen for each Monte Carlo iteration.

In the event that SPICE encounters an error (usually due to a convergence problem), a message will

appear on the screen and continue with the next Monte Carlo iteration. Erroneous data, in general,

will not reach the .sas output data file when such a message appears. However, the user must be

aware that even when no error message is reported, SPICE can nevertheless generate strange re-

sults! All users should carefully review their results before proceeding too far with the statistical

analyses.

2) Testing

bsct performs testing using the procedures described above. However, following the prompt

Enter name of training set file
(or SKIP to skip statistical analysis)

enter the name of a training set file. Such files are generated following the above procedures. When

the prompt

Enter SPICE input file:

appears, the SFA input file to be entered (with the .cat extension) now describes the circuit faults

to be tested.

After successfully reading in all files, bsct then computes the covariance matrices and other quan-

tities for each fault type and the pooled data from the faults. SPICE simulations for each fault type
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then occur in a manner identical to that when the training set data was generated. While testing,

bsct informs the user of the fault type under test, and the success of its classification and hypothesis

test. When testing of all fault types is completed, a summary of the results is displayed.

3) Operating Options

When operating bsct in the training set or test mode, the random number generator starts of with

the default seed value of -1. This can be overridden by use of the command option s, followed by

a user-specified seed integer. For example, the command

bact a 3

causes bsct to use a starting seed value of 3. Use different starting seed values when new output

data sets are to represent the same simulations, but with different random values for the compo-

nents. For example, when the training set and test data sets are to be different, this can be done so

by specifying different starting seeds.

The runtime option c, invoked as bsct c prints out the covariance matrices and other information

as training set data is read into bsct during testing. The runtime option h, as in bsct h, instructs bsct

to skip the classification and perform hypothesis testing only when bsct runs in the test mode. All

options can be specified at once; however, make sure that the s option is last. For example,

bact ca -4

tells bsct to print out all covariance matrices, and define the starting random number seed value as

-4.
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OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 3) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3 1 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.


